Chapter 2
Basics of AJAX

Learning Objectives

After completing this chapter, you will be able to
understand:

e The UpdatePanel control.

= The UpdateProgress control.

= The life cycle of Page Request.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-2 Learning ASPNET AJAX

INTRODUCTION

In this chapter, you will learn about some basic controls of AJAX such as the UpdatePanel
control, which is the most important and dynamic control in ASPNET AJAX. In addition to
this, you will learn about a new control called the UpdateProgress control, and also about
the life cycle of Page Request.

THE UpdatePanel CONTROL

The UpdatePanel control is a dynamic control that is used to update the portion of a web
page asynchronously. Here, the term asynchronously indicates that you do not have to wait
for the response of the server after sending a request. Generally, when you click a button on
aweb page, the page sends a request to the server and then immediately gets back a response
from it. During this process of request and response, the entire page is reloaded. For example,
when you click on the submit button of a form, a request is sent to the server and the entire
form is reloaded. As a result, a response is generated by the server. The process of reloading
the entire page is called postback. During postback, you can clearly see the flickering of the
page and also the progress of reloading of the page on the Status bar of the page. While
reloading, you may also hear the sound of click one or more times. Due to all this, you may
feel a little interruption while working.

The UpdatePanel control helps you restrict the flickering of the page and implements the
postback asynchronously. The UpdatePanel control is a container control without any user
interface(Ul). It is located in the System.Web.UI namespace.

You can find the UpdatePanel control in the AJAX Extensions section of the Toolbox, as
shown in Figure 2-1. To place it on the page, double-click on the UpdatePanel control in the
AJAX Extensions section.

I
Figure 2-1 The UpdatePanel control in the AJAX Extensions section

Basics of AJAX 2-3

Properties of the UpdatePanel Control

You can view different properties of the UpdatePanel control in the Properties window. To
display it, click on the UpdatePanel control and press the F4 key; the Properties window will
be displayed, as shown in Figure 2-2. Some important properties of the UpdatePanel control
such as ChildrenAsTriggers, ContentTemplate, UpdateMode, Triggers, and RenderMode
are discussed next.

UpsdakePanell Spsterm Weh UL UpdabsPanel -

iz [[u] -

|Eapresmone

(B Uipadat e P anell

Orddetndi ST igges s Trise

s W k- Tngs

Rinider e =

Trigpers | Colachion)

Lipcd il Slpairsn

Wb T
Trgyers
& collaction of g Bl cis i thi
Lipcdst aP.sresl b bes upad stesd,

Figure 2-2 The Properties window of the UpdatePanel control

ChildrenAsTriggers

The ChildrenAsTriggers property returns a boolean value, True or False, which indicates
whether the postbacks from a child control will refresh the UpdatePanel control or not. By
default, this property is set to True and you can set this default property to False only when
the UpdateMode property is set to the value Conditional. You can set the value of this property
either in the Properties window or in the code.

For example:

<asp:UpdatePanel ID="UpdatePanell” runat="server” ChildrenAsTriggers="false”>

ContentTemplate

The ContentTemplate property defines the area that can be updated asynchronously under
the UpdatePanel control. You can put controls that you want to update asynchronously under
the ContentTemplate tag. Note that the ContentTemplate property is not available in the
Properties window.

For example:

<ContentTemplate>

<asp:Label ID="Labell” runat="server” Text="Label”></asp:Label>
<asp:Button ID="Buttonl1” runat="server” Text="Button”></asp:Button>
</ContentTemplate>

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-4 Learning ASP.NET AJAX

UpdateMode

You can set the UpdateMode property of the UpdatePanel control to Always or Conditional.
The default value of the UpdateMode property is Always that indicates that the UpdatePanel
control will always update its content during an asynchronous postback. In another case, if
you set the value of UpdateMode property to Conditional, the UpdatePanel control will
update either its own area or whole page, depending upon the value set in the
ChildrenAsTriggers property.

For example:

<asp:UpdatePanell ID="UpdatePanell” runat="server” UpdateMode="Conditional”>

Triggers

You can use the Triggers property in the UpdatePanel control to fire a postback using some
specific controls. However, the postback can be either asynchronous or a normal postback. If
you want to make the postback as asynchronous, then you need to mention the specific control
with asp:AsyncPostBackTrigger, which is a property of Triggers. The Triggers control consists
of two properties: AsyncPostBackTrigger and PostBackTrigger.

AsyncPostBackTrigger

This property is used to define a control that is responsible for updating the UpdatePanel
control. You can define the name of the control in the ControllD member of the
AsyncPostBackTrigger property. Similarly, you can define the name of the event in the
EventName member of the AsyncPostBackTrigger property.

For example:

<Triggers>
<asp:AsyncPostBackTrigger ControlID="Buttonl1” EventName="Click” />
</Triggers>

PostBackTrigger
The PostBackTrigger property fires postback for the entire web page, instead of a portion
of a page. It works like a normal postback and it does not support the EventName member.

For example:

<asp:PostBackTrigger ControlID="Buttonl” />

RenderMode

The RenderMode property is used to set a value that determines whether the content of the
UpdatePanel control will be enclosed within the <div=> or element of HTML. The
RenderMode property has two values, Block and Inline. Block is the default value, which
ensures that the content of the UpdatePanel control is enclosed within a <div> element.
The Inline value ensures that the content of the UpdatePanel is enclosed in an tag.
When a web page is rendered, the UpdatePanel control is rendered as either <div> or
<span=> element of HTML. Therefore, to determine the rendering method, you need to set

Basics of AJAX 2-5

either the Inline or Block value for the RenderMode property. The value that you set for
this property is controlled by JavaScript. The example given below shows an UpdatePanel
control that is rendered as a element.

<asp:UpdatePanel RenderMode="Inline”>
<ContentTemplate>
<!—contents inside the UpdatePanel —=
</ContentTemplate>
</asp:UpdatePanel>
The following example illustrates the use of the UpdatePanel control:
Example 1

Create an application using the UpdatePanel control to show the asynchronous postback in
the browser.

The following steps are required to create this application:
1. Create a new web application with the name Ch_02.
2. Open the Default.aspx page, rename it to Exam_01.aspx and switch to the Design view.

3. In the AJAX Extensions section of the Toolbox, double-click on the ScriptManager
control; the ScriptManager control will be added to the page.

4. Double-click on the UpdatePanel control in the AJAX Extensions section of the Toolbox;
the UpdatePanel control will be added to the page.

5. Click inside the UpdatePanel control and then double-click on the Label and Button
controls in the Standard section of the Toolbox; the Label and Button controls will be
added to the page inside the UpdatePanel control. Figure 2-3 shows the layout of
application.

6. Double-click on the Button control to switch to the code behind file.

7. Add a line of code in the Button click event handler as follows:

Writing Code Using C#

protected void Buttonl_Click(object sender, EventArgs e) 1
{ 2
Labell.Text = DateTime.Now.ToString(); 3
} 4

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-6 Learning ASPNET AJAX
e i0F - Microssd® Yisual Studio
Fla Edt Wiew Webske Buld Detug Dats Fonst Tabk Test Tods Bnadyee Wdew Helo
Syl Applcation; Marosl = Taget Ruls; (K Inine Shis) -
- bl P b e D - | b | e o 7 e oo 7 i R
% | Ewam_Olaspn St Fage » x [B
8 = =
g Scripiflanager - Sorpiiianager ;
i g
g L:u':-tlﬂl :E
i .
|]
1
3
i s
(4 cosgn |1 5 | =) Source o] | htreds | [buodhy s || Formtfom » [z ¥ |
Ragty]

Writing Code Using VB

Handles Buttonl.Click
Labell.Text = Date.Now.ToString()

End Sub

place of the Label control, as shown in Figure 2-4.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Figure 2-3 The layout of the application

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

8. Save and run the application to see the result on the browser.

9. Click on the Button control, the current date and time of the system will be displayed in

Now, each time you click on the Button control, only the panel part of the page will be

refreshed, and not the whole page. Also, there will be no flickering on the page.

Basics of AJAX 2-7

B Enam_01 - Microsolt Tnternet Explores

| Ple DR Wew Paeortes Took Mep "

Q5= © - [x) [2)) e | o €] (3=] -

| Bvekass [t oot 1 355)Ch_021Exmre_0L. s x| B
=l

01/05/09 12:48:43 PM [Sutten |

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

=
[] Borm [T T [S iocel intrarst &
Figure 2-4 The asynchronous update in browser
The source code of the application is as follows:

<IDOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http:/mww.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd”> 1
<html xmlIns="http://www.w3.0rg/1999/xhtmI”> 2
<head runat="server”> 3
<title=Exam_0l</title> 4
</head> 5
<body=> 6
<form id="form1” runat="server”= 7
<div=> 8
<asp:ScriptManager ID="ScriptManagerl” runat="server”></asp:ScriptManager> 9
<asp:UpdatePanel ID="“UpdatePanell” runat="server”’> 10
<ContentTemplate> 11
<asp:Label ID="Labell” runat="server” Text="Label”’></asp:Label> 12
<asp:Button ID="Buttonl” runat="server” Text="Button”
onclick="Buttonl_Clickl” /> 13
</ContentTemplate> 14
</asp:UpdatePanel> 15
</div> 16
</form=> 17
</body> 18
</html> 19

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-8 Learning ASP.NET AJAX

== Note

i+ . . .

1 ! In the previous code, you may have noticed that a new tag, called ScriptManager, has been
used. You will learn more about this tag in the later chapters.

Explanation
The line-by-line explanation of the source code is as follows:

Line 6
<body=>
The <body=> tag defines the document’s body.

Line 7

<form id= “form1” runat="‘server”>

This line represents the starting of the <form=> tag for which the code will be written. The
first attribute, id="“form1”, indicates the name of the current form, forml. The second
attribute, runat="server”, indicates that the form will be executed at server-side, which
means that the code written under this form will be executed at the server-side.

Line 8
<div>
This is the default tag. By default, the <div> tag will be added in every form.

Line 9

<asp:ScriptManager ID="“ScriptManagerl” runat="server”’></asp:ScriptManager=>
To add the ScriptManager tag in the form is compulsory for every AJAX-enabled form. This
is the starting and closing tag of the ScriptManager control, and is added automatically
when you add the ScriptManager control from the Standard section of Toolbox in the Design
view.

Line 10

<asp:UpdatePanel ID="UpdatePanell” runat=*server”>

This line introduces a powerful control of AJAX, called the UpdatePanel control. The
asp:UpdatePanel tag is the starting tag of the UpdatePanel control and the UpdatePanell
is the name of the UpdatePanel control. The runat=*server” attribute indicates that the
UpdatePanel control will be executed at the server-side.

Line 11

<ContentTemplate>

This line indicates the starting of the <ContentTemplate> tag. The <ContentTemplate>
tag works like a container of the UpdatePanel control. If you place any control inside the
UpdatePanel control, it will be added automatically inside the <ContentTemplate> tag.

Line 12

<asp:Label ID="Labell” runat="‘server” Text=*Label”></asp:Label>

This line indicates that the Label control, named Labell, has been added inside the
UpdatePanel control. The runat="server” attribute indicates that the Label control will be
executed at the server-side. The Text attribute indicates the caption of the Label control that

Basics of AJAX 2-9

will be displayed at runtime and the </asp:Label> indicates the end tag of the Label control.

Line 13

<asp:Button ID="Button1”runat="server” Text="Button” onclick="Button1l_Clickl” />
This line indicates that the Button control that is added inside the UpdatePanel control will
be responsible for performing the postback of the form. The asp:Button tag indicates the
starting tag of the Button control and the ID="‘Buttonl1” attribute indicates the name of the
Button control. The Text=*Button™ attribute indicates the caption of the Button control
that will be displayed at runtime. And, the onclick="Buttonl_Clickl” attribute shows the
name of the event that will fire after the Button1 is clicked at runtime.

Line 14
</ContentTemplate>
This line indicates the end of the ContentTemplate tag.

Line 15
</asp:UpdatePanel>
This line indicates the end of the UpdatePanel tag.

Line 16
</div>
This line indicates the end of the div element.

Line 17
</form=>
This line indicates the end of the form tag.

Line 18
</body=>
This line indicates the end tag of the body element.

The explanation of code behind file is as follows:

Line 3

Labell.Text = DateTime.Now.ToString();

This line indicates that the current date and time of the system will be stored in the Labell
control.

Advantages of Using the UpdatePanel Control

The UpdatePanel control enables you to build client-centric web applications that are not
only up-to-date but also fulfill the client’s requirements in moments. The main advantage of
using the UpdatePanel control is that it updates a particular area of the page rather than the
whole page. When the UpdatePanel control updates a particular area of the page, it is known
as the partial page update. This control reduces the amount of flickering of the page that
normally occurs when a web page performs postbacks.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-10 Learning ASP.NET AJAX

Performing Updates with Triggers

The default behavior of the UpdatePanel control is to update the child controls that normally
trigger a postback. This is because the default value of the UpdateMode property is Always,
whereas the default value of the ChildrenAsTriggers property is True. The UpdateMode
property is a type of UpdatePanelUpdateMode enumeration. As you learned earlier, the
possible values of the UpdateMode property are, Always and Conditional. The default value
is Always, which means that the UpdatePanel control will be refreshed each time a postback
occurs.

Table 2-1 summarizes the results of possible combinations of the UpdateMode and
ChildrenAsTriggers properties.

UpdateMode ChildrenAsTriggers
Always False
Always True
Conditional False
Conditional True

Table 2-1 Different values of the UpdateMode
property of the UpdatePanel control

The first combination of Table 2-1 will result in error. This is because, on the one hand, you
are prompting the UpdatePanel control to always update its content, and on the other hand,
you are prompting the triggering of child control to be False. So, the result will be an error.
In the second combination, the value of the UpdateMode property is Always and the value
of the ChildrenAsTriggers property is True, which means the UpdatePanel control will
refresh or update its content in each case. In the third combination, the value of the
UpdateMode property is Conditional and the value of the ChildrenAsTriggers property is
False. It means that the UpdatePanel control will update its content, with a condition that a
control from outside the panel triggers a postback. In the last combination, the value of the
UpdateMode property is Conditional and the value of the ChildrenAsTriggers property is
True. It means that the UpdatePanel control will update its content either when the child
control triggers a postback or a control from outside the panel triggers a postback.

Basics of AJAX 2-11

The following example illustrates the triggering of the UpdatePanel control:

Example 2

Create an application to show the asynchronous postback in the browser using the Trigger
control.

The following steps are required to create this application:

1. Open the Ch_02 application. Right-click on the icon of the Ch_02 application in the
Solution Explorer window and choose the Add New Item option from context menu;
the Add New Item dialog box will be displayed.

2. Inthe Add New Item dialog box, select Web Form from Templates area. Next, change
the name of form to Exam_02.aspx and then choose the Add button; the form will be
added to your application.

3. Double-click on the ScriptManager and UpdatePanel controls in the AJAX Extensions
section to add these controls to the form.

4. Click inside the UpdatePanel control and then double-click on the Label control in
the Standard section of the Toolbox. Next, change the text of the Labell control to
Inside Label.

5. Click outside the UpdatePanel control and then double-click on one more Label control
and a Button control in the Standard section of the Toolbox. Next, change the value of
the Text property of the Label2 control to Outside Label. Figure 2-5 shows the layout of
the application.

6. Double-click on the Button control to switch to the event handler of the button and then
add the following code to the Button control event handler.

Writing Code Using C#

protected void Buttonl_Click(object sender, EventArgs e)
{

Labell.Text = DateTime.Now.ToString();

Label2.Text = DateTime.Now.ToString();

}

a b~ wdNPEF

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-12 Learning ASPNET AJAX

T iCh OF - Microssdt Yisual SEudio

Fle Edt Wiew Wetske Dubl Debug Defa Fomat Tabke Test Took Andhae Wik el
Syl Apphcaton; Maus v Target Rulei New ke Syl bt | S|
R IR YR N S TR 5§ =R
5| Exam_DZaspM | St Foge | - x [T}
= JEa = 15
E Scripliianager « Srpflanagen ;
ol g
m Chebzide lzbrlﬂl E
f Inede Laked
g 4
n
L &
4
3
| ‘IJ F
| < %k | Swen | 1] shimia | [<bodys| shormefomis|[dva] 3
Raady i

Figure 2-5 The layout for performing updates using Triggers
Writing Code Using VB

Protected Sub Buttonl Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Buttonl.Click

Labell.Text = Date.Now.ToString()
Label2.Text = Date.Now.ToString()

End Sub

7. Return to the Design view and then click on Source. Next, add lines from 9 to 11 inside
the <Triggers> tag. The code will be explained in the next section.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http:/mww.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlIns="http://www.w3.0rg/1999/xhtmI”>

<head runat="server”>

<title=Exam_02</title>

</head>

<body=>

<form id="“form1” runat="server”’>

~No o~ wWNBRE

Basics of AJAX 2-13
<div> 8
<asp:ScriptManager ID="ScriptManagerl” runat="server”> 9
</asp:ScriptManager=> 10

<asp:Label ID="Label2” runat="server” Text="Outside Label”></asp:Label> 11
<asp:Button ID="“Buttonl1” runat="server” onclick="Buttonl_Click”

Text="Button” /> 12
<asp:UpdatePanel ID="“UpdatePanell” runat="server”’> 13
<ContentTemplate> 14
<asp:Label ID="Labell” runat="server” Text="Inside Label”’></asp:Label> 15
</ContentTemplate> 16
<Triggers> 17
<asp:AsyncPostBackTrigger ControlID="Button1” EventName="Click” /> 18
</Triggers=> 19
</asp:UpdatePanel> 20
</div> 21
</form=> 22
</body> 23
</html> 24

8. Save your application and execute it by pressing the F5 key; the output will be displayed
in the browser.

9. Click on the Button control. You will note that only InsideLabel will show the current
date and time of system, but OutsidelLabel will not be refreshed. The output of the
application is shown in Figure 2-6.

Explanation
The line-by-line explanation of the source code given earlier is as follows:

Line 17
<Triggers>
This line indicates the starting tag of the Trigger control.

Line 18

<asp:AsyncPostBackTrigger ControllD="Button1” EventName=*Click” />

This line indicates the properties of the <Triggers> tag. The property
asp:AsyncPostBackTrigger indicates that the Buttonl control will be responsible for updating
the UpdatePanel control. The ControllID attribute is a member of AsyncPostBackTrigger
property and it specifies the name of the control that will be responsible for postback. Similarly,
the EventName member indicates the name of the event of the control.

Line 19
</Triggers>
This line indicates the closing tag of the Trigger control.

The explanation of code behind file is as follows:

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-14 Learning ASP.NET AJAX

T Enam_0Z - Microsolt Inkernet Explores

Fi= DR Vew Pesrbess Took Help ar
W T S "fl,a#nh Favortms 7| P
didrga |48 vt iocaliost 11 755 4ch,_D2Ex_0Z, amps e 1

=l
Outside Label [Sutan |

01/05/09 2:25:04 FM

i o el = -

Figure 2-6 Performing updates using Triggers

Line 3

Labell.Text = DateTime.Now.ToString();

This line indicates that the current date and time of system will be stored in the Labell
control.

Line 4

Label2.Text = DateTime.Now.ToString();

This line indicates that the current date and time of system will be stored in the Label2
control.

In Example 1, you learned that the UpdatePanel control was refreshed by calling the postback
of a button control that was inside the UpdatePanel control. Note that in this example, the
UpdatePanel control refreshes its content by calling the postback of a button control that
is outside the UpdatePanel control. It occurs with the help of the Trigger control. In lines 6
and 7 of the source code given above, you will notice that the Label and Button controls are
written outside the UpdatePanel control. But again, these controls perform only the
asynchronous postback because of the Trigger control. The Trigger control enables you to
perform asynchronous postback on a button or specific controls. Also, you do not have to put
postback controls like Button inside the UpdatePanel control for updating the panel. You
need to only specify the name of the control for the ControllID attribute as well as the name
of the event for the attribute EventName.

Basics of AJAX 2-15

Using Multiple UpdatePanel Controls

You can systematically update portions of a page separately or together. It does not matter
how many UpdatePanel controls you use in a single page and therefore, you can perform
multiple updates on a single page.
The following example illustrates the use of multiple UpdatePanel controls:

Example 3
Create an application to show the asynchronous updates of multiple portions in the browser.

The following steps are required to create this application:

1. Open the Ch_02 application. Add a new web form to the application from the Solution
Explorer window.

2. Change the name of the form to Exam_03.aspx.

3. Inthe AJAX Extensions section, double-click on the ScriptManager control to add it to
the page.

4. Add two UpdatePanel controls to the page.
5. Click inside the first UpdatePanel control and add a Label control.
6. Similarly, click inside the second UpdatePanel control and add a Label control to it.

7. Now, click inside any of the UpdatePanel controls and add a Button control from the
Standard section of the Toolbox.

== Note
% L You can add a Button control inside any of the UpdatePanel controls. After performing the
postback using the Button control, both the UpdatePanel controls will be updated.

8. Change the value of the Text property of the Button control to Update Again! in the
Properties window.

9. Click outside the area of the UpdatePanel control and then add one more Label control
from the Standard section of the Toolbox to the page. The layout of the page after
adding the controls will be as shown in Figure 2-7.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-16 Learning ASPNET AJAX

e 0F - Microssdt Yisual Shodin

Fie Edt Wiew Welshe Buld Detug Data Fonst Tabls Ted Tods Anabee Wiekw Hep
Syls Application; Marasl = Targst Buls; (Wesw Inline St -
] v bl P R M D - - b | Deg o 7 B 8 1 m g
% | Ewam_0daspM | St Fage | = x [5
= Jra - EMe
E Suriptamager - 5ol g | g
] -]
W (Lakel 5
i | "
g' T el Upsate Agad | .
L]
4
3
Laiel
) af "
[(a Do | Sp | 00 Sonrem |][] [cbody | [eformafioem = | [ev =] 3
Amay &

Figure 2-7 The layout of multiple UpdatePanel controls

10. Double-click on the page to switch into the Page_Load event. Add the following code to
the Page_Load event:

Writing Code Using C#
protected void Page_L oad(object sender, EventArgs e)

{
Labell.Text = “First Panel Updated at:” + DateTime.Now.ToLongTimeString();

oOUh WN B

Label2.Text = “Second Panel Updated at:” + DateTime.Now.ToLongTimeString();
Label3.Text = “Outside Panel Updated at:” + DateTime.Now.ToLongTimeString();
}

Basics of AJAX 2-17

Writing Code Using VB

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Labell.Text = “First Panel Updated at:” + DateTime.Now.ToLongTimeString()

Label2.Text = “Second Panel Updated at:” + DateTime.Now.ToLongTimeString()
Label3.Text = “Outside Panel Updated at:” + DateTime.Now.ToLongTimeString()
End Sub

11. Save the application and execute it. You will notice that all three Label controls have
been updated and display the updated time. Figure 2-8 shows the output of the application.

12. Now, click on the Update Again! button. On doing so, you will notice that the Label
control outside the UpdatePanel controls is not updated, while the Label controls inside
the UpdatePanel controls are updated.

2 Enam_na - Miorosolt Inkernet Explorer

Pl [dt Wiem Faecrkes Took Help ar
" b L 5 L
Rt = TN T | M :-ﬂ ol o Sewch | 5 Pt {:" =g =2l =
ekcess (88 it fiocaiosst] F55)Ch_02(Exm_0%, amps Ei=
=l

Outside Panel Updated at:3:25:29 PM

First Panel Updated at:3:25:29 P _ Updats Agsinl |

Second Panel Updated at-3;25:29 PM

=l
& Dorm [T s oo ntraret .
Figure 2-8 Multiple UpdatePanel controls updated

Note that both the Labels inside the UpdatePanel controls show the updated time. Which
proves that they have been updated simultaneously. It means that multiple portions of a
page can be updated simultaneously. In this example, you updated only two portions of a

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-18 Learning ASP.NET AJAX

page simultaneously. However, you can also use this method to update a number of portions
on a single page.

Updating the Master Page Using the UpdatePanel Control
You can update the content pages of a master page with the help of the UpdatePanel control.
In such cases, you do not have to apply any new concept to implement updates on the master
page. The technical advantage while applying updates on a master page using this method
is that you do not need to add the ScriptManager control for the content pages. You can
simply add the ScriptManager control to the master page and then you will get its effect on
all the content pages added to it. The master page provides the ScriptManager control for
all content pages, so you can perform partial page updates for these pages as well.

The following example illustrates a master page being updated using the UpdatePanel control:

Example 4

Create an application to update the master page using the UpdatePanel control.
The following steps are required to create this application:

1. Open the Ch_02 application. Right-click on the icon of the Ch_02 application in the
Solution Explorer window and choose the Add New Item option from context menu;
the Add New Item dialog box will be displayed.

2. Inthe Add New Item dialog box, choose the Master Page option from the Templates
area. Next, choose the Add button; the master page with the name MasterPage.master will
be added to your project.

3. Double-click on the ScriptManager control in the AJAX Extensions section to add it to
the master page. Make sure the ScriptManager control is added to your page outside
the ContentPlaceHolder control, and it should be placed at the top of all controls, as
shown in Figure 2-9.

=u. Note
% [The ContentPlaceHolder control is automatically added to the master page. It defines a
region to place contents in the ASPNET master page.

4. Now, right-click on the MasterPage.master node in the Solution Explorer window, as
shown in Figure 2-10, and then select the Add Content Page option from the context
menu; a default aspx page will be added to your application. This aspx page is called
the Content page.

5. Change the name of the page to First.aspx. Next, click inside the ContentPlaceHolder
control of the First.aspx page and double-click on the UpdatePanel control in the Standard
section of the Toolbox to add it to the content area of the First.aspx page.

Basics of AJAX 2-19

Ch_E - Miicrosolt Yisual Studio

Fld Edt View Wehte Buald Dsbug Dabs Fwmst Tsbie Test Todk Anshoe Windos Heip
Syl Applcation: Marusl v TargebRuls; [New Inies Sris) -EEI
=T I ‘- | b | Datug o 7 e N = R
% | HasterPagemaster St Page v x [5
— r ;I :&1
? I;M.m| ;
m
e
: i
&
m
E L
-
L =}
]
]
[L] |‘|_I
4 Dasgn |21 5ok | (] Source 4| et | chiody || tormtom ||| |
Rissdy Ln 14 ools Th s P

Figure 2-9 The layout of a master page

Click inside the UpdatePanel control and then double-click on the Calendar control in
the Standard section of the Toolbox. Figure 2-11 shows the layout of the master page
with the Calendar control added to it.

Repeat the Step 5, and change the name of the page to Second.aspx. Next, click inside the
ContentPlaceHolder control of the Second.aspx page and double-click on the UpdatePanel
control in the Standard section of the Toolbox to add it to the content area of the
Second.aspx page.

In the Second.aspx page, click inside the UpdatePanel control then, double-click on the
Label and Button controls in the Standard section of the Toolbox. Figure 2-12 shows the
master page with the Label and Button controls added to it.

Double-click on the Second.aspx page to switch to the Page_Load event handler of the
form and add the following source code:

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-20 Learning ASPNET AJAX

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

10.

11.

@ Az 3w

e SR WTh_O2 2T (L prajed)
_"F:\FIEh_ﬂE‘.

) fpp_Data

2] Deetonsit s

2] B _0d aeper

13| Ewamin 06 mpee

2] B _03 . aspee

]

[T open

Open With...

== -=-= =

i' i Cindd
-
—_—

Wi [T

B} reck Aooesshdby..
Exchucde From Project
B o
| Copy
o Deke
RN

Figure 2-10 Adding Content Page in master page

Writing Code Using C#

protected void Page_Load(object sender, EventArgs €) 1
{ 2
Labell.Text = DateTime.Now.ToString(); 3
} 4

Writing Code Using VB

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Labell.Text = Date.Now.ToString()
End Sub

Now, open the First.aspx page and execute it; the browser will be displayed, as shown in
Figure 2-13.

Click on the forward or backward button of the calendar to change month. You will
notice that there is no flickering when the page refreshes.

Basics of AJAX 2-21

Tk O - Ficrossdt Yisuasl SEodic

Fla Edt 7iew ‘ebdbe Buld Dehisy [Dabs FReEnst Table Ted Todk Ansdee Windos Help
Tyls Applcstion; Mamus = Tagat Ruls; [Hey Irbee Shpls] -E@‘
Db b a0 - - e AT R Y

=
W FirshBSpH MasterPuge.ractsr | Shart Page | = x [
E | HasTerFage. e g
. ScriniManacer - l H
) .m-wmm.ﬁm’ﬁwmuuwm-«%“ g
m | Bum Bon Tue Wed Tha Fr Sat ¥
% ¥ oM 2 W™ W 12]
=3 4 5 & 7 B 8 | E
1w 11 12 13 14 15 1& 3
17 18 1% 20 21 22 23
23 26 27 # ¥ I
31 & 3 4 5 B
u
.1J F
[rwsgn |l | S | 4| aComtentTemplates [campiCabsndardCalerdar] » 3
Craq margin Fendies bo reste marping, Lnn ol 6 Thibl I:H!- s

Figure 2-11 The master page layout with the Calendar control

12. Close the browser. Now, open the Second.aspx page and execute it. You will see the browser,
as shown in Figure 2-14.

13. Click on the Button control. You will notice that in this case also there is no flickering and
the page is refreshed.

In this example, you learned how partial page updates occur on a master page. In such cases,
you cannot only update portions of a content page but also multiple content pages of the
master page.

Limitations of the UpdatePanel Control
The UpdatePanel control has certain limitations that are described as follows:

1. Incase of validation controls, AJAX registers those client scripts, which are not compatible
with the UpdatePanel control. So, to use the validation controls with JavaScript, you will
have to disable the client script.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-22 Learning ASP.NET AJAX
20 0h_0Z - Piicrogaft Yisual Studio
Fla Eft Wiew Wehste Bukl Dehug Dats Fomsl Tsbhe Test Todk &rahee Windos Help
Syl Apolcstion; Marasl w Tamst Ruls; [New Iries i) -:EL‘
ol | A - ¢ = | b | Dabug - ~ = R
% | SecondwaSpH Firstas | MasterPage masher | St Fage hallecl '
g HasterFuge. mated || 2
= Serinllanaaer - : =
I’" .'\-l'll'!|l''-'l.l|-'--\-r\l|'l--|I_lI Lt CaTL) =,
ek Tl EEEEEEEEEEEEE——— . &
DO BN i i T
m 1
§ r
L] gl
=Z
B
L] | F l_l
| G Comon | Skt | (= Source || e rCanbent #Content2 ¥
Ry Lni Cols ths 1 T

Figure 2-12 The master page layout with the Label and Button controls

You can disable the validator controls by using the code given below:

<asp:RequiredFieldValidator EnableClientScript=“false” runat="“server”
ControlToValidate="TextBox1” />

When you write the above code, the validator controls will not validate the client-side
script.

2. Another control that does not work with the UpdatePanel control is the FileUpload
control. This control will not work when you use it inside the UpdatePanel control and
call a postback asynchronously. Therefore, in such a case, you need to use the
PostBackTrigger property instead of the asyncPostBackTrigger property under the
Triggers tag to make it work with the UpdatePanel control.

The following code shows the use of the PostBackTrigger property of the UpdatePanel
control:

<asp:UpdatePanel ID="UpdatePanell” runat="server” UpdateMode="conditional”>1

<contentTemplate> 2
<asp:FileUpload runat="server” ID="fileUpload”/> 3
<asp:Button runat="server” Text="Upload” ID="UploadButton” /> 4
</ContentTemplate> 5

Basics of AJAX 2-23

h Enam_04-First - Microsolt Internet Explores

Fl= [t Yem Faeokes Took Help Hy
J-.: rJ'! .u'] f] :J_m :?,Fm .E:-”‘ = |
Bdrtss (8] btz Nocaiosk |1 3550 03Pt as0 = B se
=
& May 2008 =
Yun Mon Tue Wed Thun Fn Nat
27 28 2 W 1 2
I 4 5 £ 7]]
i 11 12 13 14 15 16
17 18 1¥ 20 21 2& i3
a4 25 HO2T 2B 2% 3D
31 1 2 % 4 § &
| -
] | I | [Local intravet £

Figure 2-13 Updating the Calendar control on the master page

<Triggers>

<<asp:PostBackTrigger ControlID="UploadButton” />
</Triggers=>

</asp:UpdatePanel>

© o0 ~NO»

Note
i
,:] % L The PostBackTrigger property does not support the EventName attribute.

Explanation
The line-by-line explanation of the above source code is as follows:

Line 3

<asp:FileUpload runat=*server” ID="fileUpload”/>

This line indicates that the FileUpload control will be added inside the UpdatePanel
control. The runat=*server” attribute will execute the control at server-side. Moreover, the
ID="fileUpload” attribute indicates that fileUpload is the name of the FileUpload control.

Line 4

<asp:Button runat="server” Text="“Upload” ID="UploadButton” />

This line indicates that a Button control has been added to the page, which will be responsible
for performing postback.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-24 Learning ASP.NET AJAX

W Enam_04-Second - Mioreenlt Tnkernet Explorer

s [Mem Fowrbes Tock hep i

P o T i - [u] [T] o) o e Favortes 7 b e]

diaan [bt oot 1) F5500h,_NZ{Sacond. sss = e
o |

01/05/09 3:50:19 PM _Bution |

= TN -

Figure 2-14 Updating the Label control on the master page

Line 7

<asp:PostBackTrigger ControllD="“Buttonl” />

This line indicates the properties of the Triggers control. asp:PostBackTrigger indicates
that a postback will be performed by the Button control, and ControlID="Button1” indicates
that the name of the Button control will be Buttonl.

THE UpdateProgress CONTROL

When you use the UpdatePanel control, an asynchronous postback is performed and the
UpdatePanel control is refreshed without causing any flickering or disturbances for the user.
In this case, although the postback is carried out in the usual way by sending request to
server and receiving response from it, but this postback is performed so fast that it becomes
impossible for the user to notice its progress. Even though it provides a good service, but is
not user-friendly. Whenever the user updates the portion of a page to refresh the UpdatePanel
control, he cannot see the progress of the updates. To solve this problem, you can use the
UpdateProgress control that creates a graphical user interface to show the progress.

The UpdateProgress control shows progress whenever it is refreshed. Basically, this control
allows you to display Ul on the page while the postback is going on. Also, it allows a user to
cancel callback, if a user does not want postback for the UpdatePanel control.

Basics of AJAX 2-25

The following code snippet is used to declare the UpdateProgress control:

<asp:UpdateProgress ID="UpdateProgressl” runat="server”>
<ProgressTemplate>

<div class=“progress’>

</ProgressTemplate>

</asp:UpdateProgress=>

OO WNPE

Explanation
The line-by-line explanation of the source code given above is as follows:

Line 1

<asp:UpdateProgress ID="“UpdateProgressl” runat=*‘server”>

This line indicates the starting tag of the UpdateProgress control. Here, the
ID="UpdateProgressl” attribute indicates that UpdateProgress1 will be the unique name
of the UpdateProgress control in the application. Similarly, the runat="server” attributes
indicates that the UpdateProgress control will execute at server-side.

Line 2

<ProgressTemplate>

This line indicates the properties of the UpdateProgress control. The ProgressTemplate
property will be explained later in this chapter.

Line 3

<div class="progress”>

This line indicates that a <div=> element is being added inside the UpdateProgress control
that will adjust the image of the progress that you want to display.

Line 4

This line indicates that an image will be added inside the UpdateProgress control that will
show the status of the progress. You can specify the full path of the image under the src
attribute.

Line 5
</ProgressTemplate>
This line indicates the end of the <ProgressTemplate> tag.

Line 6
</asp:UpdateProgress>
This line indicates the end of the UpdateProgress control.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-26 Learning ASP.NET AJAX

Properties of the UpdateProgress Control

Some important properties of the UpdateProgress control are ProgressTemplate,
AssociatedUpdatedPanel 1D, DisplayAfter, and DynamicLayout. These properties are
discussed next.

ProgressTemplate

The ProgressTemplate property defines the template where you can create an interface to
show the progress of updating the UpdatePanel control. When a callback occurs, the content
inside the ProgressTemplate property will be displayed on the browser. If you do not include
anything between the <ProgressTemplate> and </ProgressTemplate> tags, the
UpdateProgress control will not display anything.

AssociatedUpdatePanellD

It refers to the UpdatePanel control that you want to associate with the UpdateProgress
control. When a postback event is generated inside the UpdatePanel control, the associated
UpdateProgress control will be displayed. If you do not specify the AssociatedUpdatePanelID
property, the UpdateProgress control will be displayed for any asynchronous postback control
inside the UpdatePanel or the Triggers control.

DisplayAfter
You can set value of time delay in progress of UpdatePanel control in millisecond to display
the contents of ProgressTemplate.

DynamicLayout
It determines whether the ProgressTemplate property is rendered dynamically.

The following example illustrates the use of the UpdateProgress control:

Example 5

Create an application to show the progress of updating the record asynchronously in the
browser.

The steps required to use the UpdateProgress control are given next. Note that before creating
the application, in this case, you need to create a table in SQL server:

Steps for Creating the Table in SQL Server
1. Open SQL Server Management Studio from the Programs menu. Next, connect to SQL
by specifying the Server name, Login, Password, and so on.

2. Right-click on the Databases folder and then choose the New Database... item in the
shortcut menu; the New Database dialog box will be displayed.

3. Enter the name of the database, for example, AJAX, in the Database name: field. Then,
choose the OK button; a database with the name AJAX will be created under the Databases
folder.

Basics of AJAX 2-27

Now, double-click on the AJAX database. You will see some folders under the AJAX
database. Right-click on the Tables folder and then choose the New Table... option from
the shortcut menu; a table will be displayed.

Enter the name of fields and data types under the Column Name and Data Type fields,
respectively, refer to Table 2-2.

Name of Fields Data Type Allow Nulls
emplID smallint No
empName varchar(20) Yes
empSalary decimal(18,0) Yes

Table 2-2 The employee table in the design mode

Save the table by clicking on the save icon in the Toolbar; you will be prompted to enter
the name of the table. Enter employee and then choose the OK button; the employee
table will be created.

Now, double-click on the Tables folder and then right-click on the dbo.employee table.
Next, click on the Open Table; the employee table will open.

Now, enter some records in each field of the employee table, refer to Table 2-3.

emplD empName empSalary
1 John 4000
2 Steven 3000
3 Clark 5000
4 Suzenne 4000
5 Thomas 5000

Table 2-3 The employee table with records

9. Save the table by clicking on the save icon in the toolbar. Figure 2-15 shows the final table

created. Now, close the Management Studio.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-28 Learning ASP.NET AJAX

wnplll arpians g akiry
i Jobn 4000

2 Eheaywn F0i]

3 Tk SO

4 Surparns 400

5 Themas 5000
E] L F Fl HEL AR

Figure 2-15 The employee table created in SQL

Steps to Create the Application

1.

10.

11.

Open the Ch_02 application. Add a new web form to the application from the Solution
Explorer window.

Change the name of the form to Exam_05.aspx.

Double-click on the ScriptManager control in the AJAX Extensions section to add it to
the form.

Double-click on the UpdatePanel control in the AJAX Extensions section to add it to
the form.

Click inside the UpdatePanel control, and then double-click on the GridView control in
the Data section to add it inside the UpdatePanel control.

Click anywhere outside the UpdatePanel, control and then double-click on the TextBox
and Button controls in the Standard section of the Toolbox to add them to the form for
searching database.

Now, double-click on the UpdateProgress control in the AJAX Extensions section to
add it to the form.

Next, double-click on the SqlDataSource control in the Data section to add it to the
form. Figure 2-16 shows the layout of the form.

Double-click on the web.config file in the Solution Explorer window to open it.

Add the following code after the </appSettings=> tag in the web.config file.

<connectionStrings> 1
<add name="“Connect”connectionString="Server=.;database=AJAX;uid=sa;

pwd="/> 2
</connectionStrings> 3

Now, switch back to the Exam_05.aspx page, click on Source, and add the following code:

Basics of AJAX

2-29

T Ch WiF - Ficrossdt Yisual SEudio

Fia Edt View Webste Bull Debug Duts Foaemat Table Test Tosk Andhye Windoe Help
Syl Applcation; Marusl = TargstRuls; [New Inline Syis) -EELE
D - el P | # M |7 - T | B | Debe - HEReEO-g

Enam_05.85pH St Fage | -

Tl al
E |
| Seripttanager - SorgiManage =
N T— m
2l search | i
m | EmpID Fap Name Ewmp Salary m
E’ Ciatabound Datsbcind Diataboumd n
1 Databound Datsbourd Diatabound]
Diatabound Databcind Databeund 3
Diatabound Dratsboand Distaboumd
Tiatabound Dhataboird Databound
SqlDat aSpurce - Solwasoroe]
| -
| -IJ F
||E|:'M Sowce | 4| <ContentTemplate s | caspSrdviewsGrdiew] > 3l
- Ln % a1 hi e

Figure 2-16 The layout for searching database

<!DOCTYPE html PUBLIC “-//W3C//IDTD XHTML 1.0 Transitional//EN”
“http://www.w3.0rg/TR/xhtmI1/DTD/xhtml1-transitional.dtd”>
<html xmlIns="http://www.w3.0rg/1999/xhtm|”>

<head runat="*server”>=

<title=Exam_05</title>

</head>

<body=>

<form id="form1” runat="server”>=

<div>

<<asp:ScriptManager ID="ScriptManagerl” runat="server’>=
</asp:ScriptManager=>

<<asp:TextBox ID="TextBox1” AutoPostBack="true” runat="server’=
</asp:TextBox>

<<asp:Button ID="Buttonl” runat="server” Text="Search” />
<asp:UpdateProgress ID="UpdateProgressl” runat="server’=
<ProgressTemplate>

<div style="background-color:Fuchsia”>Searching database...</div>
</ProgressTemplate>

</asp:UpdateProgress>

<asp:UpdatePanel ID="UpdatePanell” runat="server”=
<ContentTemplate>

O©CoO~NOOTA~WNPE

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-30 Learning ASP.NET AJAX

<asp:GridView ID="GridViewl” runat="server”
AutoGenerateColumns="“false” DataSourcelD="SqlDataSourcel”

EmptyDataText="No records found”> 21
<Columns> 22
<asp:BoundField DataField="empld” HeaderText="“Emp ID”

ReadOnly="true” SortExpression="empld” /> 23
<asp:BoundField DataField="empName” HeaderText="Emp Name”
SortExpression="empName” /> 24
<asp:BoundField DataField="empSalary” HeaderText="“Emp Salary”
SortExpression="empSalary” /> 25
</Columns=> 26
</asp:GridView> 27
</ContentTemplate> 28
</asp:UpdatePanel> 29

<asp:SqglDataSource ID="SqglDataSourcel” runat="server” ConnectionString=
“<%$ ConnectionStrings:Connect %>" ProviderName=

“<%$ ConnectionStrings:Connect.ProviderName %=" SelectCommand=
“select empld, empName, empSalary from employee where (empName like

“” + @empName + ‘%")"> 30
<SelectParameters> 31
<asp:ControlParameter ControlID="TextBox1” Name="empName”

PropertyName="Text” Type="string” /> 32
</SelectParameters= 33
</asp:SqlDataSource> 34
</div> 35
</form=> 36
</body> 37
</html> 38

12. Press the F5 key to run the application; the output will be displayed in the browser.

13. Type the first letter of an employee’s name and then click on the Search button. Your
browser will appear, as shown in Figure 2-17.

Figure 2-17 shows records of employees, whose names start with the letter s. During this
process, you will notice that when you click on the Search button, a message is displayed on
your screen, as shown in Figure 2-18. The duration of display of the message on the browser
will depend on the system configuration. This message is a part of the UpdateProgress
control. It is included in the HTML <div> element inside the ProgressTemplate tag of the
UpdateProgress control, refer to line 16. It shows the progress of updating the UpdatePanel
control with the help of the UpdateProgress control. Also, the message specified in the
ProgressTemplate tag will be displayed, as per the design specified by you while coding.

In Figure 2-17, you can notice that records are displayed according to the letter typed in text
box. This is a simple application that finds records from database based on certain criteria,
and then displays them on the browser. Note that, the aim of creating this application is not
to show the records but to display how the UpdateProgress control can be used for showing
the progress of an application.

Basics of AJAX 2-31

;lH.II:I N5 - Micrpanlk Tekepnet Feplorer

Fis [dt Wew Fevorkas Took Wel u
] . 1 .

o - i - (%] (2]) e preete £ G-) -

Bk [it | Fecaronk 1 7550Ch_D2Eeary 5. asps = e

|5 M|

Ewmip I Emip Mamse Erap Salary

2 SaEven EHlEd]
4 SrEnnE A000

=
F

] mone [T s oo ke
Figure 2-17 Searching database through the UpdateProgress control

Figure 2-18 Searching database

Explanation
The line-by-line explanation of the web.config code is as follows:

Line 1

<connectionStrings>

This line indicates the start tag of the <connectionStrings> element. This element is used
to create connection to a database and can be used globally.

Line 2

<add name=*"Connect” connectionString="Server=.;database=AJAX;uid=sa;pwd="/>
This line indicates the <add> element, which is used inside the <connectionStrings>
element. In name="Connect”, the term Connect is the name, which will be used as a reference
for the connectionStrings object. connectionString is the connection parameter that will
pass to the ConnectionString object. It may vary from system to system depending upon the
server and database configuration.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-32 Learning ASP.NET AJAX

Line 3
</connectionStrings=>
This is the end tag of the <connectionStrings> element.

The line-by-line explanation of the source code given in Step 11 is as follows:

Line 14

<asp:UpdateProgress ID="“UpdateProgressl” runat=*‘server”>

This line indicates the starting tag of the UpdateProgress control. Here, the
ID=""UpdateProgressl” attribute indicates that UpdateProgressl is the name of the
UpdateProgress control. And, the runat=*server” attribute indicates that the
UpdateProgress control will execute at server-side.

Line 15

<ProgressTemplate>

This line indicates the starting tag of the <ProgressTemplate> element. This element is
used to define a template to show the progress of updating of the UpdatePanel control.

Line 16

<div style=*background-color:Fuchsia”>Searching database...</div>

In this line, the message Searching database... is designed under the <div> element, which
will be displayed at the time of updating the UpdatePanel control.

Line 17
</ProgressTemplate>
This line indicates the end tag of the <ProgressTemplate> element.

Line 18
</asp:UpdateProgress>
This line indicates the end tag of the UpdateProgress control.

Line 19

<asp:UpdatePanel ID="UpdatePanell” runat=*server”>

This line adds the UpdatePanel control to the form. Here, the ID="UpdatePanel1” attribute
indicates that the name of the UpdatePanel control will be UpdatePanell. And, the
runat="*server” attribute indicates that the UpdatePanel control will execute at server-side.

Line 20

<ContentTemplate>

This line indicates the contents that you want to put inside the UpdatePanel control. When
the postback fires for the UpdatePanel control, the contents inside the <ContentTemplate>
will be refreshed.

Line 21

<asp:GridView ID=“GridViewl” runat=*“server”’AutoGenerateColumns=*false”
DataSourcelD=*SqlDataSourcel” EmptyDataText="“No records found”>

This line adds the GridView control inside the UpdatePanel control. The

Basics of AJAX 2-33

ID="GridViewl” attribute indicates that GridView1 will be the name of the GridView control.
Similarly, the runat="server” attribute indicates that the GridView control will execute at
server-side. The AutoGenerateColumns="false” attribute indicates that extra columns will
not be generated automatically at runtime. The DataSourcelD="SqlDataSourcel” attribute
indicates that SqlDataSourcel will be the name of DataSource for GridView control. The
EmptyDataText="‘No records found” attribute indicates that the message No records found
will be displayed when there is no record in the database.

Line 22

<Columns=>

This is the starting tag of the <Columns=> element. It is used to bind columns into the
GridView control.

Line 23

<asp:BoundField DataField=“empld” HeaderText=“Emp ID”ReadOnly="true”
SortExpression="empld” />

This line binds columns with their datafields. The DataField="empld” attribute indicates
that empld is the name of the field in the database to be bound. The HeaderText="Emp
ID” attribute indicates that Emp ID will be the header text for the empld field at runtime.
The ReadOnly=*true” attribute indicates that the empld field will be read only. The
SortExpression="empld” attribute indicates that the sorting of data will be done according
to the empld field.

Lines 24 and 25
These lines are similar to Line 23.

Line 26
</Columns=>
This line indicates the end tag of the <Columns=> element.

Line 27
</asp:GridView>
This line indicates the end tag of the GridView control.

Line 28
</ContentTemplate>
This line indicates the end tag of the <ContentTemplate> element.

Line 29
</asp:UpdatePanel>
This line indicates the end tag of the UpdatePanel control.

Line 30

<asp:SqlDataSource ID=*SqlDataSourcel” runat=*server”

ConnectionString= “<%$ ConnectionStrings:Connect %>"

ProviderName= “<%$ ConnectionStrings:Connect.ProviderName %=>"
SelectCommand= “‘select empld, empName, empSalary from employee where (empName
like ” + @empName + ‘%")”">

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-34 Learning ASP.NET AJAX

This line adds the data connectivity control, SqlDataSource to the form. This control is used
to connect to the data source. Here, SqlDataSourcel is the name of the control. The
runat="server” attribute indicates that the control will execute at server-side. The
ConnectionString attribute indicates the string, which is used to connect with the data source.
The ProviderName indicates the name of the data provider that is used to connect with the
data source. The SelectCommand attributes returns a query that will retrieve all those records
from the employee table, whose name starts with the letter typed by the user.

Line 31
<SelectParameters>
This is the start tag of <SelectParameters>.

Line 32

<asp:ControlParameter ControllD="TextBox1” Name=“empName” PropertyName=
“Text” Type="“string” />

This line indicates the starting and closing of ControlParameter tag. The ControlID attribute
indicates the name of the control to which you want to pass the value. The Name attribute
indicates the actual name of the field in database from which you want to match the value.
The PropertyName attribute indicates the property of the control. The Type attribute indicates
the data type of the value.

Line 33
</SelectParameters>
This line indicates the end tag of <SelectParameters>.

Line 34
</asp:SqlDataSource>
This line indicates the end tag of the SqlDataSource control.

Line 35
</div>
This line indicates the end tag of the <div> element.

Line 36
</form=
This line indicates the end tag of the <form=> element.

LIFE CYCLE OF PAGE REQUEST

The Page Request life cycle starts from the ScriptManager control. Basically, there is no
major difference between the life cycle of an AJAX page and the life cycle of an ASPNET
page. The page execution life cycle is not altered even if the application uses partial rendering
feature. In other words, the Page Request life cycle will remain the same even when you are
using the UpdatePanel control. Therefore, in this case also, when an update occurs, the
overhead on the server, as well as, the traffic between browser and server will remain intact.
The ScriptManager control participates in the life cycle to facilitate partial page updates.
The class, which manages partial page rendering in the browser, is called the
PageRequestManager class.

Basics of AJAX

2-35

The PageRequestManager class provides five events for asynchronous requests, and these
are given in Table 2-4 below:

Event

Description

initializeRequest

This event is fired when the control is triggered for
asynchronous partial postback by the user. You can add
event handlers to this event.

beginRequest

This event is fired after the initializeRequest event and
before the asynchronous postback is processed.

pagelLoading

This is the first event that occurs after the server
process is finished. The pagelLoading event is fired after
the page rendering event of the server.

pagelLoaded This event is fired after whole page is refreshed,
whether it is synchronous or asynchronous postback.
endRequest This is the last event of the Page Request Life Cycle. This

event can be used to trace errors.

Table 2-4 The events of PageRequestManager class

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-36 Learning ASP.NET AJAX

Self-Evaluation Test

Answer the following questions and then compare them to those given at the end of this
chapter:

1. is the process of reloading the entire page.
2. The UpdatePanel control is located in the namespace.
3. is the property of the UpdatePanel control, which defines the area that can

be updated asynchronously.

4. The content pages of the
UpdatePanel control.

page can be updated with the help of the

5. The control shows the progress of refreshing the UpdatePanel control.
6. The default value of the ChildrenAsTriggers property is True. (T/F)

7. DisplayAfter is the property of the UpdatePanel control. (T/F)

8. The ChildrenAsTriggers property returns a boolean value. (T/F)

9. Which of the following is not a property of the UpdatePanel control?

(a) Triggers (b) UpdateMode
(c) Comparison (d) RenderMode

10. Which of the following is not a property of the UpdateProgress control?

(a) DisplayAfter (b) Visible
(c) AssociatedUpdatePanel (d) UpdateMode

Answer the following questions:

1. Using the UpdatePanel control, you can update portions of a page synchronously. (T/F)
2. Using the UpdatePanel control, you can restrict the flickering of a page. (T/F)

3. RenderMode is a property of the UpdatePanel control. (T/F)

4. The ScriptManager control should be present on all pages, in which you want to apply
partial page updates. (T/F)

5. The runat=*"server” attribute indicates that the control will execute at server-side. (T/F)

Basics of AJAX 2-37

6. In which of the following conditions will the UpdatePanel control always refresh?

(a) When UpdateMode is Always and ChildrenAsTriggers is False.
(b) When UpdateMode is Always and ChildrenAsTriggers is True.
(c) When UpdateMode is Conditional and ChildrenAsTriggers is False.
(d) When UpdateMode is Conditional and ChildrenAsTriggers is True.

7. With which of the following controls, the UpdatePanel control will work properly?

(a) Menu (b) TreeView
(c) GridView (d) FileUpload

8. For which of the following purposes, do you use the ContentTemplate property of the
UpdatePanel control?

(a) To define a template, which shows the contents of the UpdatePanel control.
(b) To define a template inside the UpdatePanel control that will be refreshed
at runtime.
(c) To define a template outside the UpdatePanel control that will be refreshed at
runtime.
(d) To define a template, which shows the properties of the UpdatePanel control.

9. For which of the following purposes, do you use the ProgressTemplate property of the
UpdateProgress control?

(a) To define a template, which shows the progress of refreshing the UpdateProgress

(b) 'f’grgg;)ihe a template, which shows the progress of refreshing the UpdatePanel

(c) 'I(Egr(;ter;i)lr;e a template, which shows the action performed by the UpdateProgress

(d) '(I:'gnc};?i:ﬁe a template, which shows the action performed by the UpdatePanel
control.

10. Which of the following is not an event of the PageRequestManager class?

(a) initializeRequest (b) pageLoading
(c) endRequest (d) pageRequest

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

2-38 Learning ASP.NET AJAX

Exercises

Exercise 1

Create an application to update three different portions of a web page using the UpdatePanel
controls.

Exercise 2

Create an application to show the progress of refreshing a web page using the UpdateProgress
control.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

Answers to Self-Evaluation Test
1. Postback, 2. System.Web.UI, 3. ContentTemplate, 4. Master, 5. UpdateProgress, 6. T,
7.F 8.T,9.c,10.d.

