
Introduction to
 SQL *Plus

After completing this chapter, you will be able to:
• Understand SQL *Plus buffer commands.
• Understand various data types.
• Understand various types of constraint.
• Create a table.
• Modify and delete a table.

Learning Objectives

Chapter 2

2-2 Learning Oracle 11g: A PL/SQL Approach

INTRODUCTION TO SQL
SQL (pronounced as “ess-que-el”) stands for Structured Query Language. It is a specialized
non-procedural language used to communicate with a database. The statements of SQL are
used to perform various tasks such as inserting, updating, or retrieving data from a
database. According to ANSI (American National Standards Institute), SQL is a standard
language for the relational database management system. A variety of established database
products support SQL, including the products of Oracle and Microsoft. Unfortunately, there
are many different versions of SQL, but according to ANSI, they must support the same
major keywords in a similar manner such as SELECT, INSERT, UPDATE, DELETE, WHERE,
and so on. The standard SQL commands such as SELECT, INSERT, UPDATE, DELETE,
CREATE, and DROP can be used to work with a database.

This chapter will describe the basics of each of these commands and allow you to put them
for practice using the SQL Interpreter.

History of SQL
The model of RDBMS (Relational Database Management System) was first introduced by
Dr. E. F. Codd (Dr. Edgar Frank Codd). In June 1970, Codd published a paper “A Relational
Model of data for Large Shared Data Banks”, which was later accepted as the model for
RDBMS. The first version of SQL was developed in the early 1970s. This version, initially
called SEQUEL, was designed to manipulate and retrieve the stored data. Later, the SQL
language was standardized by American National Standards Institute (ANSI) in 1986. The
subsequent versions of the SQL standard were released as per the norms of International
Organization for Standardization (ISO). Later in 1979, Relational Software Corporation, now
known as Oracle Corporation, introduced SQL as the first commercial database language.
Since then, this language has been accepted as the standard RDBMS language.

Introduction to SQL *Plus
SQL *Plus is an extension of the standard SQL and has an online command interpreter.
SQL *Plus program allows you to store and retrieve data in the Relational Database
Management System. It is frequently used by the database administrators and developers to
interact with the Oracle database system. It is an interface for SQL and PL/SQL languages.
SQL *Plus is a reporting tool that is used as an interface between the Client and the Server of
Oracle database. Using SQL *Plus, a user can create program files and generate the
formatted reports.

SQL *Plus is used by the application developers to:

1. Create and modify the database.

2. Create, replace, alter, and drop objects.

SQL *Plus is used by the end-users to:

1. Query the data.

Introduction to SQL *Plus 2-3

2. Retrieve data from the database.

SQL *Plus is used by the Database Administrators to:

1. Create users.

2. Specify rights and privileges to users.

3. Monitor the database.

4. Control the access to the database and its objects.

5. Maintain consistency and integrity of the database.

6. Maintain Backup and Recovery of database.

7. Maintain Performance and Tunning of database.

Loading SQL *Plus
The following steps are required to start SQL *Plus:

1. Choose Start > Programs > Oracle 11g > Application Development > SQL Plus from
the task bar; the Log On window will be displayed, as shown in Figure 2-1.

Figure 2-1 The Log On window of SQL *Plus

2-4 Learning Oracle 11g: A PL/SQL Approach

2. In this window, enter the user name, password, and host string in their corresponding
edit boxes. If you are using Oracle Personal Edition, leave the Host String edit box
blank. Next, choose the OK button in this window; the Oracle SQL *Plus window will be
displayed, as shown in Figure 2-2.

SQL> shown in Figure 2-2 is called the SQL command line or the SQL prompt of SQL *Plus.

Exiting from the Oracle SQL *Plus Window
You can exit Oracle SQL *Plus window in three ways. These are as follows:

1. Enter EXIT or QUIT at the SQL command window and then press ENTER.

2. Choose File > Exit from the menu bar.

3. Next, choose the Close button from the top right corner of the Oracle SQL *Plus
window title bar.

Note
EXIT or QUIT is not case-sensitive.

SQL *Plus Buffer Commands
In SQL *Plus, when you enter a statement, the statement is stored in the memory. This
memory is referred to as SQL buffer or command buffer. When you enter another statement,
the first statement is replaced with the new one and all the entered inputs are stored as a
single SQL *Plus statement in the command buffer. If you press ENTER while entering SQL
statement in SQL *Plus, the control will be transferred to the new line. However, if the
previous line is ended with a semicolon or single slash, the SQL statement will be
executed. SQL *Plus has provided some buffer commands that are discussed next.

Figure 2-2 The Oracle SQL *Plus window

Introduction to SQL *Plus 2-5

L[IST]
The List or L command is used to display the content of the SQL buffer. The syntax for using
the List or L command is as follows:

SQL> LIST or L

If the command is a single line command, the line itself will be the current line. In the
multi-line command, by default, the last line will be the current line. The current line is
marked by the * sign.

For example:

SQL>SELECT * FROM Employee;
SQL>LIST

The result of the second command will be as follows:

1 * SELECT * FROM Employee;

Here, the first command line was stored in the buffer. As a result, the second command line
will display the contents of the SQL buffer.

Making a Line as the Current Line
To make a line as the current line, type the line number at the SQL command window and
press ENTER; the specified line will become the current line.

For example:

SQL>2

The given command will make the second line in SQL *Plus window as the current line.

I[NPUT]
The INPUT or I command is used to add lines to the existing command or the current
command in the buffer. The syntax for using the INPUT command is as follows:

SQL>INPUT text or I text

In the above syntax, text is the text or string that you want to add to the existing command.

For example:

SQL>SELECT * FROM Employee

To add one or more lines to the above SQL query, enter the following statement:

SQL>INPUT WHERE Salary>20000;

2-6 Learning Oracle 11g: A PL/SQL Approach

The result of the above SQL query will be same as that of the following query:

SQL>SELECT * FROM Employee
WHERE Salary>20000;

DEL
The DEL command is used to delete the current line from the buffer. This command is used
alone or with * to delete the current line.

The syntax for using the DEL command is as follows:

SQL>DEL

For example:

Enter the following command to view the buffer data and to delete the current line in the
buffer:

SQL> L
1 SELECT * FROM Employee
2* WHERE Empno = 08
SQL> DEL
SQL> L

The output after deleting the specified line from the buffer is as follows:

1* SELECT * FROM Employee
SQL>

You can get the same result by using the * with the DEL command as follows:

SQL>DEL *

The DEL command can also have the following syntax:

DEL m n

The DEL m n command is used to delete lines from m through n. If you substitute * for m or
n, it will imply the current line.

The following command will delete the specified line from the buffer:

1 SELECT First_name, Salary, Start_Date
2 FROM Employee
3* WHERE Empno = 08
SQL> DEL 2
SQL> L

Introduction to SQL *Plus 2-7

The output after deleting the second line from the buffer is as follows:

1 SELECT First_name, Salary, Start_Date
2* WHERE Empno = 08
SQL>

The following command will also delete the specified line from the buffer:

1 SELECT First_name, Salary, Start_Date
2 FROM Employee
3* WHERE Empno = 08
SQL> DEL 2 *
SQL> L

The output after deleting the specified line from the buffer is as follows:

1* SELECT First_name, Salary, Start_Date
SQL>

The DEL LAST command will delete the last line from the buffer:

SQL> L
1 SELECT First_name, Salary, Start_Date
2 FROM Employee
3* WHERE Empno = 7698
SQL> DEL LAST
SQL> L

The output after deleting the specified line from the buffer is as follows:

1 SELECT First_name, Salary, Start_Date
2* FROM Employee
SQL>

A[PPEND]
The APPEND or A command is used to append more statement lines to the current line.
The syntax for using the APPEND command is as follows:

SQL>APPEND text or A text

In the above syntax, text is the text or string that you want to append to the current line.

For example:

SQL>A; or APPEND;

The above command will add the (;) semicolon at the end of the current line.

2-8 Learning Oracle 11g: A PL/SQL Approach

C[HANGE]
The CHANGE or C command is used to find and replace the string in the current line of the
SQL buffer. The syntax for using the CHANGE command is as follows:

CHANGE/Old_Value/New_Value or C/Old_Value/New_Value

In the above syntax, Old_Value is the existing value in the command line, whereas New_Value
is the new value, which replaces the Old_Value.

For example:

If you want to change the first occurrence of Empno to Emp_No, enter the following SQL
statement in SQL *Plus window:

Select Empno, Emp_Name from Emp;

SQL>C/Empno/Emp_No

The above command will change the first occurrence of Empno to Emp_No.

/ (BACKSLASH)
The / (Backslash) command is used to execute the current command in the SQL buffer. The
syntax for using the backslash is as follows:

SQL>/

SAV[E]
The SAVE or SAV command is used to save the command line in a file for future use.

The syntax for using the SAVE command is as follows:

SQL>SAVE File_Name or SQL>SAV File_Name

The above command creates the file File_Name with the extension .sql.

For example:

SQL> SAVE Info

The above command will save the command lines to a file Info with the extension .sql.

The syntax for using the SAVE command to create, append, or replace data in the existing
file is as follows:

SQL>SAVE File_Name [option]

Introduction to SQL *Plus 2-9

The above command stores the command line to the file File_Name and the option can have
the following possible options: CRE[ATE], APP[END], REP[LACE].

For example:

SQL> SAVE Info APP

The above command will add the command lines to the existing file Info.

REP[LACE]
The REPLACE or REP command is used to overwrite the command lines on the existing
file. The syntax for using the REPLACE command is as follows:

SQL>SAVE File_Name REP[LACE]

In the above syntax, File_Name is the name of the file in which you want to overwrite the command
lines.

GET
The GET command is used to read the command lines from the SQL file and insert into the
buffer. The syntax for using the GET command is as follows:

SQL>GET File_Name

In the above syntax, File_Name is the name of the file from where you want to read the
command lines.

START
The START command is used to load and execute the specified file of SQL *Plus
commands. The syntax for using the START command is as follows:

SQL>START File_Name

In the above syntax, File_Name is the name of the specified file from where you want to load
and execute the command lines.

ED[IT]
The EDIT or ED command is used to edit the command lines or the contents of the SQL
buffer or the existing file. The syntax for using the EDIT command is as follows:

SQL>EDIT File_Name

In the above syntax, File_Name is the name of the file whose contents you want to edit.

Note
If File_Name has the extension .sql, there is no need to write the file name with extension; but
if it is other than this, extension has to be specified.

2-10 Learning Oracle 11g: A PL/SQL Approach

@ (‘at’ sign) or @@ (double ‘at’ sign)
The @ or @@ command is used to execute the commands saved in the SQL file. The SQL
file is a normal text file, and is created using Notepad. The file can be called from the local
system or from the web server. The syntax for using the @ command is as follows:

@{File_Name [.ext]}

The syntax for using the @@ command is as follows:

@@{File_Name [.ext]}

In the above syntax, File_Name is the name of the file, whose contents you want to execute.
Note that you need to specify the path of that particular file.

For example:

For using the @ and @@ commands, you need to perform the following steps:

1. Enter the following statement in the Notepad editor and save this file in the
C:\Oracle_11g\c02_oracle_11g with file name as sqls.txt.

SELECT Empno, Ename, Job, HireDate, Sal, Comm
FROM Employee;

2. Execute the contents of the file by using the @ or @@ command. To do so, enter the
following statement in SQL *Plus:

@@“C:\Oracle_11g\c02_oracle_11g\sqls.txt”

or

@“C:\Oracle_11g\c02_oracle_11g\sqls.txt”

The above command will execute the contents of the file sqls.txt and list all rows of the
Employee table, as shown in Figure 2-3.

RUN
The RUN command is used to list and execute the commands stored in the SQL buffer. The
syntax for using the RUN command is as follows:

SQL>RUN

Introduction to SQL *Plus 2-11

DESC[RIBE]
The DESCRIBE or DESC command is used to view the information about the objects of the
Oracle database such as tables, views, and so on. When you use the DESCRIBE command
with a table or a view, it gives the information such as column name, data type, width of
data column. Also, it gives information about each column of a table whether it will allow
NULL or NOT NULL value. When you use the DESCRIBE command with a procedure,
function, or package, you will get information like name, data type, mode IN/OUT, and
default values of arguments.

The syntax for using the DESC command is as follows:

DESC Object_Name

In the above syntax, DESC is the keyword and Object_Name is the name of a table, view,
type, function, procedure, package, or synonym that you want to describe.

For example:

To view the structure of the Emp table, enter the following command:

SQL> DESC Emp

The output of this command will be as follows:

Name Null? Type
------------------ ---------------- ----------------------------

Figure 2-3 Data of the Employee table displayed on using the @@ command

2-12 Learning Oracle 11g: A PL/SQL Approach

EMPNO NOT NULL NUMBER(4)
ENAME VARCHAR2(10)
JOB VARCHAR2(9)
MGR NUMBER(4)
HIREDATE DATE
SAL NUMBER(7,2)
COMM NUMBER(7,2)
DEPTNO NUMBER(2)

Also, if you want to view the information regarding the package DBMS_OUTPUT, enter
the following command in SQL *Plus (SQL prompt):

SQL>DESC DBMS_OUTPUT

The output of this command will be as follows:

PROCEDURE DISABLE
PROCEDURE ENABLE
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
BUFFER_SIZE NUMBER(38) IN DEFAULT
PROCEDURE GET_LINE
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
LINE VARCHAR2 OUT
STATUS NUMBER(38) OUT
PROCEDURE GET_LINES
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
LINES TABLE OF VARCHAR2(255) OUT
NUMLINES NUMBER(38) IN/OUT
PROCEDURE NEW_LINE
PROCEDURE PUT
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
A VARCHAR2 IN
PROCEDURE PUT_LINE
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
A VARCHAR2 IN

CL[EAR] BUFF[ER]
The CLEAR BUFFER command is used to clear the SQL buffer. This command deletes all
lines from the buffer. The syntax for using the CLEAR BUFFER command is as follows:

SQL> CLEAR BUFFER or CL BUFF

Introduction to SQL *Plus 2-13

For example:

List the contents of the SQL buffer by entering the following command:

SQL> L

The output of this command will be as follows:

1 SELECT empno, ename
2* FROM emp WHERE empno = 7629;

Now, enter the CLEAR BUFFER command to clear the SQL buffer:

SQL> CL BUFF or CLEAR BUFFER

After executing the above command, a message buffer cleared will be displayed, confirming
that the buffer has been cleared.

Again, list the contents of the SQL buffer; a message No lines in SQL buffer will be prompted,
as shown below.

SQL> L
No lines in SQL buffer.
SQL>

SPOOL
The SPOOL command is used to direct the output from the SQL command line to a disk file.
This enables you to save the output for future review. The syntax for using the SPOOL
command is as follows:

SQL>SPOOL file_name

To start spooling the output into an operating system file, you need to enter the SPOOL
command followed by the corresponding file name.

For example:

SQL> SPOOL my_log_file.log

The given command will create a new file named my_log_file.log.

The following command will append the output to the existing file my_log_file.log:

SQL> SPOOL my_log_file.log APPEND

The following command will stop the spooling and close the file:

SQL> SPOOL OFF

2-14 Learning Oracle 11g: A PL/SQL Approach

afiedt.buf
afiedt.buf is the default edit file of SQL *Plus. When you execute the ED or EDIT command
without arguments, the last SQL or PL/SQL statement will be saved in this file and the file
will open in the default editor, as shown in Figure 2-4.

The following example will illustrate the use of the INPUT and SAVE commands to save
SQL *Plus commands in a file.

Write queries to illustrate the use of the INPUT and SAVE commands to save commands in
a file using the Emp table.

1. To compose and save the SQL query using the INPUT command, you need to clear the
buffer by entering the following command in SQL *Plus.

SQL> CLEAR BUFFER

2. Now, enter the INPUT command to enter commands:

SQL> INPUT
1 SELECT Empno, Ename, Sal, Comm
2 FROM Emp
3 WHERE Job = ‘SALESMAN’
4 ORDER BY Sals
5

Note
Make sure you do not enter a semicolon at the end of the command.

3. Enter the SAVE command in SQL *Plus to store the query in a file called empRep with
the extension SQL, as shown in Figure 2-5.

Figure 2-4 The default editor afiedt.buf of SQL *Plus

Example 1

Introduction to SQL *Plus 2-15

SQL> SAVE empRep
Created file empRep.sql

4. Next, to check whether commands are saved in the file empRep.sql, enter the START
command in SQL *Plus.

SQL>START empRep

The output of the above command is shown in Figure 2-6.

The following example will illustrate the use of the APPEND and LIST commands to append
text to a command line.

Write a query to illustrate the use of the APPEND and LIST commands by using the Emp
table.

The following steps are required to add text the end of a line in the buffer by using the
APPEND command:

1. Enter the GET command to open the file empRep.sql, as shown in Figure 2-7.

Figure 2-6 Running a command file using the START command

Example 2

Figure 2-5 Saving commands using the INPUT and SAVE commands

2-16 Learning Oracle 11g: A PL/SQL Approach

SQL>GET empRep

2. Now, to append a space and the clause DESC to line 4 of the current query, first you need
to list line 4 as the current line by entering the following command in SQL *Plus, refer to
Figure 2-7.

SQL>LIST 4
4* ORDER BY SAL

3. Next, enter the following command to add the space and the clause DESC to the end of
the current line, refer to Figure 2-7.

SQL>APPEND DESC
4* ORDER BY SAL DESC

4. Now, enter the RUN command to verify the query, refer to Figure 2-7.

SQL>RUN
1 SELECT Empno, Ename, Sal, Comm
2 FROM Emp
3 WHERE Job = ‘SALESMAN’
4* ORDER BY Sal DESC

The RUN command will list the contents of the buffer and execute them refer to Figure 2-7.

Figure 2-7 Appending text to a line using the APPEND command

Introduction to SQL *Plus 2-17

Comments within SQL Statements
Comments can make your application easy to read and maintain. For example, you can add a
comment in a statement that describes the purpose of that statement in your application.
Note that the comments added within the SQL statements do not affect their execution.

A comment can appear between keywords, punctuation marks, or parameters in a statement.
You can add a comment in a statement in two ways:

1. The comment begins with a slash and an asterisk (/*) and ends with an asterisk and a
slash (*/). The comment text can have multiple lines. The opening and terminating
characters need not to be separated from the text by a space or a line break.

2. The comment begins with -- (two hyphens) and ends with a line break. The comment
text in this case cannot have multiple lines.

CUSTOMIZING THE SQL *PLUS ENVIRONMENT
You can customize the SQL *Plus environment setting the environment variables as per your
convenience or requirement. SQL *Plus has a set of environment variables that control the
way SQL *Plus displays data and assigns special characters.

The commands that are used to modify the environment variables are discussed next.

SET Command
The SET command is used to customize or alter the environment of SQL *Plus for the
current session by changing the values of environment variables.

For example, you can use this command to set the display width for data, customize HTML
formatting, enable or disable printing of column headings, and also set the number of lines
per page and page size.

The syntax for using the SET command is as follows:

SET Variable Value

Table 2-1 lists various environment variables that are commonly adjusted using the SET
command.

SHOW Command
The SHOW command is used to display the current value of variables from the SQL *Plus
environment setting. The variables used with the SET command can also be used with the
SHOW command, refer to Table 2-1. For example, the following statement displays the current
value of PAGESIZE and LINESIZE:

SQL>SHOW PAGESIZE LINESIZE

2-18 Learning Oracle 11g: A PL/SQL Approach

The output of this command will be as follows:

pagesize 14
linesize 80

Environment Variable Description

ARRAY[SIZE] {15|n} Sets the size of the data that SQL *Plus will
fetch from the database at one time

AUTO[COMMIT] Whenever a change is made in the database
{OFF|ON|IMM[EDIATE]|n} by SQL or PL/SQL statements, Oracle will

automatically save the change.

AUTOT[RACE] Displays a trace report on the successful
{OFF|ON|TRACE[ONLY]} execution of DML statements
[EXP[LAIN]] [STAT[ISTICS]]

COLSEP {_|text} Sets the text to be printed between the
selected columns

DEF[INE] {‘&’|c|OFF|ON} Sets the character used to prefix substitution
variables to c

ECHO {OFF|ON} Controls whether the command will be
displayed when it is run by the START or @
command

EDITF[ILE] filename[.ext] Sets the default file name for the EDIT
command

EMB[EDDED] {OFF|ON} Sets the report feature on or off

ESC[APE] {\|c|OFF|ON} Defines the character that is entered as
escape character

FEED[BACK] {6|n|OFF|ON} Displays the number of records returned by
a query when the query selects at least n
records

FLAGGER Ensures that the SQL statements confirm to
{OFF|ENTRY|INTERMED the ANSI/ISO SQL92 standard
[IATE]|FULL}

HEA[DING] {OFF|ON} Sets the column headings on or off in
reports

Introduction to SQL *Plus 2-19

Environment Variable Description

HEADS[EP] {||c|OFF|ON} Defines the character that you enter for the
heading separator

LIN[ESIZE] {80|n} Sets the total number of characters that
SQL *Plus displays in one line before
starting a new line

NEWP[AGE] {1|n|NONE} Sets the number of blank lines between the
top of each page and the title of the page

NUMF[ORMAT] format Sets the default number format

NUM[WIDTH] {10|n} Sets the default width for numbers to
display

PAGES[IZE] {24|n} Sets the number of lines in each page

PAU[SE] {OFF|ON|text} Allows you to control the scrolling of your
terminal when the reports are running

SERVEROUT[PUT] Controls whether to display the output
[FOR[MAT] {WRA[PPED]| (DBMS_OUTPUT.PUT_LINE) of the stored
WOR[D_WRAPPED] procedures or PL/SQL block in SQL *Plus
|TRU[NCATED]}]

SHOW[MODE] {OFF|ON} Displays the old and new settings of a
SQL *Plus system variable

SQLBL[ANKLINES] Allows blank lines within an SQL command
{ON|OFF} SQLC[ASE]

SQLCO[NTINUE] {> |text} Controls the line continuation prompt when
a command does not fit in a line and needs
to be continued. The default continuation
character is the hyphen (-)

SQLN[UMBER] {OFF|ON} Sets the prompt for the second and the
subsequent lines of the SQL statement

SQLPRE[FIX] {#|c} Sets the SQL *Plus prefix character that
you use with an SQL *Plus command in a
separate line to execute the command
immediately without affecting the SQL
statement being entered

2-20 Learning Oracle 11g: A PL/SQL Approach

Environment Variable Description

SQLP[ROMPT] {SQL>|text} Sets the SQL *Plus command prompt

SQLT[ERMINATOR] Sets the character that is used to terminate
{;|c|OFF|ON} and execute SQL statements

SUF[FIX] {SQL|text} Sets the default file extension for SQL *Plus
scripting

TERM[OUT] {OFF|ON} Controls the display of the output
generated by executing the contents of a file

TI[ME] {OFF|ON} Shows the current time at the command
prompt

TIMI[NG] {OFF|ON} Controls the display of timing statistics
when an SQL command and PL/SQL block
is run

TRIM[OUT] {OFF|ON} Specifies whether to allow blank space at
the end of each displayed line

TRIMS[POOL] {ON|OFF} Specifies whether to allow blank spaces
at the end of each spooled line

UND[ERLINE] Sets the character that is used to underline
{-|c|ON|OFF} column headings in SQL *Plus

VER[IFY] {OFF|ON} Determines whether SQL *Plus will list the
text of a command before and after
replacing substitution variables with values

WRA[P] {OFF|ON} Specifies whether to truncate or wrap the
display of a selected row if the width of
the current line is long

The following example will illustrate the use of the SET command:

Enter the following statement in SQL *PLUS:

SELECT * FROM Emp;

Table 2-1 Common environment variables used with the SET command

Introduction to SQL *Plus 2-21

The above statement will return all rows of the Emp table, as shown in Figure 2-8.

Now, issue the following command:

SQL>SET PAGESIZE 24

This command will set the page size to 24.

SQL>SET LINESIZE 130 PAGESIZE 30

This command will set the line size to 130 and the page size to 30. Now, reissue the following
statement to display all rows of the Emp table, as shown in Figure 2-9.

SELECT * FROM Emp;

Alternatively, you can modify the SQL *Plus environment by using the Environment dialog
box shown in Figure 2-10. To invoke this dialog box, choose Options > Environment from
the menu bar. Next, perform the following steps to set the environment variables using this
dialog box.

1. Select the linesize option from the Set Options list box. Next, select the Custom radio
button in the Value area and enter 120 in the edit box below the Off radio button to
display 120 characters per line.

Figure 2-8 Output of the SELECT statement before setting the environment

2-22 Learning Oracle 11g: A PL/SQL Approach

2. Next, select the pagesize option from the Set Options list box. Select the Custom radio
button in the Value area and enter 40 in the edit box below the Off radio button to
display 40 lines per page.

3. Choose the OK button to save the settings.

Note
These settings will be lost when you log out or exit the Oracle SQL *Plus window. It means
that whenever you open the Oracle SQL *Plus window, you need to specify these settings to
modify the display environment of SQL *Plus.

You can set multiple environment variables using the following single SET command:

SET TIME ON LINESIZE 130 PAGESIZE 30

Figure 2-9 Output of the SELECT statement after setting the environment

Figure 2-10 The Environment dialog box

Introduction to SQL *Plus 2-23

This command will display the time on the left side of the SQL prompt and set the page and
line size, as shown in Figure 2-11.

DATA TYPES
A data type is the name or label for a set of values. It specifies what type of value an attribute
or a variable holds. Also, it specifies how the information will be stored in a computer. Each
attribute or variable has a data type. The data type of a value associates a fixed set of properties
with the value. These properties cause Oracle to treat the values of one data type differently
from the values of another data type. When you create a table, you need to specify the data
type for each of its columns. The data types of columns define the domain for values that
each column can contain. In-built data types of Oracle can be broadly classified into four
categories, as listed in Table 2-2.

 Category Data Type

 Character CHAR, NCHAR, VARCHAR, VARCHAR2, and NVARCHAR2

 Number NUMBER, Fixed-point, Floating-point, BINARY_FLOAT, and
BINARY_DOUBLE

 Date DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE,
TIMESTAMP WITH LOCAL TIME ZONE, and INTERVAL
YEAR TO MONTH, and INTERVAL DAY TO SECOND

 LOB BLOB, CLOB, BFILE, and NCLOB

Character Data Type
The Oracle Database provides character data types to store character values. These data
types are discussed next.

CHAR
The CHAR data type is used to store the fixed length character data. The maximum length
of data that it can store is 2000 bytes or characters. The default value for CHAR data type is 1.

Figure 2-11 Using the TIME, LINESIZE, and PAGESIZE options

Table 2-2 In-built data types of Oracle

2-24 Learning Oracle 11g: A PL/SQL Approach

The syntax for declaring column with the CHAR data type is as follows:

column_name CHAR(width)

In the above syntax, column_name is the name of the column having the CHAR data type
and width is optional, which can be any integer value ranging from 1 to 2000. If you do not
specify the value of width, the default value will be set.

NCHAR
The NCHAR data type is used to store the fixed length character string in the national
character set of the database. This data type can hold up to 2000 characters. Defining
national character set in the database determines the maximum length of the column. When
you create a table with a column having NCHAR data type, you define the column length in
characters.

The syntax for declaring column with the NCHAR data type is as follows:

column_name NCHAR(width)

In the above syntax, column_name is the name of the column having the NCHAR data type
and width is an integer value that ranges from 1 to 2000.

For example:

Status CHAR(1)

In the above example, the column Status is of the CHAR data type and has width of 1 unit.

VARCHAR
The VARCHAR data type is used to store a variable-length character string. The maximum
width of the VARCHAR data type is 4000 bytes or characters. It is recommended to use the
VARCHAR2 data type rather than the VARCHAR data type.

The syntax for declaring column with the VARCHAR data type is as follows:

column_name VARCHAR(width)

In the above syntax, column_name is the name of the column having the VARCHAR data
type and width is an integer value that ranges from 1 to 4000. If you do not specify the value
of width, Oracle will return an error.

VARCHAR2
The VARCHAR2 data type is also used to store a variable-length character string. While
creating the VARCHAR2 column, you can specify the maximum number of bytes or
characters of data that can be stored in this column. If you try to enter a value that exceeds
the maximum length of the column, then the Oracle database will return an error. However,

Introduction to SQL *Plus 2-25

if you enter a value that is smaller than the column size, the Oracle database will store the
actual value of the data and set the remaining space free. This implies that the Oracle database
does not add the trailing blank spaces to the data value and thus, let the remaining space free
for other purpose. The maximum width of the VARCHAR2 data type is 4000 bytes.

The syntax for declaring column with the VARCHAR2 data type is as follows:

column_name VARCHAR(width)

In the above syntax, column_name is the name of the column having the VARCHAR2 data
type and width is an integer value ranging from 1 to 4000. If you do not specify the value of
width, Oracle will return an error.

Note
The VARCHAR2 data type is the successor of VARCHAR. Therefore, it is recommended that
you use VARCHAR2 as a variable-sized array of characters, rather than VARCHAR.

NVARCHAR2
The NVARCHAR2 data type is used to store variable-length or multibytes character set data.
While creating the NVARCHAR2 column, you can specify the maximum number of bytes or
characters of data that can be stored in this column. If you enter a value that exceeds the
maximum length of the column, Oracle will throw an error. However, if the value entered is
smaller than the column size, Oracle will store the actual value of the data and set the
remaining space free. The maximum length of the column is determined by the national
character set defined in the column. The maximum width of the NVARCHAR2 data type is
4000 bytes.

The syntax for declaring column with the NVARCHAR2 data type is as follows:

column_name NVARCHAR(width)

In the above syntax, column_name is the name of the column having the NVARCHAR2 data
type and width is an integer value ranging from 1 to 4000. If you do not specify the value of
width, Oracle will throw an error.

NUMBER Data Type
The NUMBER data type stores variable-length numeric data with a precision between 1 and
38, and the scale has a range between –84 and 127. It can store the zero, positive numbers, or
negative fixed numbers with absolute values from 1.0 x 10-130 to 1.0 x 10126 digits as well as
fixed and floating point numbers. If you specify the value of an expression greater than 1.0 x
10126, the Oracle database returns an error. The Oracle database provides three subtypes of
the NUMBER data type: Fixed-point, Floating-point, and Integer.

Tip: Both NCHAR and NVARCHAR2 are Unicode data types, which store
Unicode characters. The character set of NCHAR and NVARCHAR2 data types
can be either AL16UTF16 or UTF8. The character set AL16UTF16 or UTF8
can be specified while creating a database.

2-26 Learning Oracle 11g: A PL/SQL Approach

Fixed-point Number
To define the Fixed-point number data type, you have to specify the values of both precision
and scale.

The syntax for declaring column with the Fixed-point number data type is as follows:

Column_Name NUMBER(P,S)

In the above syntax, Column_Name is the name of the column having the NUMBER data
type. P is the precision or the total number of digits with precision up to 38 digits and S is the
scale or the number of digits on the right of the decimal point. The value of S can range from
-84 to 127. The precision value denotes all digits on the left of the decimal point, whereas the
scale value denotes all digits to right of the decimal point.

Integer Numbers
An integer is a whole number with no digit on the right of the decimal point. You can define
a column of integer data type by omitting the scale value.

The syntax for declaring column with an integer number data type is as follows:

Column_Name NUMBER(P)

In the above syntax, Column_Name is the name of the column having the NUMBER data
type and P is the precision or the total number of digits with precision up to 38 digits.

Floating-point Number
The Floating-point numbers can have a decimal point anywhere between the first and the
last digits, or it can be a number without any decimal point as there is no restriction for the
decimal point. Scale is not applicable for this data type. To declare a column with this data
type, omit the precision and scale values.

The syntax for declaring column with the Floating-point number data type is as follows:

Column_Name NUMBER

In the above syntax, Column_Name is the name of the column having the NUMBER data
type. Oracle provides two numeric data types for floating-point numbers: BINARY_FLOAT
and BINARY_DOUBLE.

BINARY_FLOAT
The BINARY_FLOAT data type is a single-precision floating-point number data type.
Each BINARY_FLOAT value requires 5 bytes, including a length byte.

BINARY_DOUBLE
The BINARY_DOUBLE is a double-precision floating-point number data type. Each
BINARY_DOUBLE value requires 9 bytes, including a length byte.

Introduction to SQL *Plus 2-27

Note
BINARY-FLOAT is a 32-bit data type and BINARY-DOUBLE is a 64-bit data type.

Datetime and Interval
The Oracle datetime data types store date and time values. The datetime data types are
DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL
TIME ZONE. The interval data types are INTERVAL YEAR TO MONTH and INTERVAL
DAY TO SECOND. The datetime and interval data types are discussed next.

DATE
The DATE data type is used to store date and time. Oracle stores the following information
for each date value: century, year, month, date, hour, minute, and second. You can represent
the date and time in both character and number data types. The character and numeric
dates can be converted into date value by using the TO_DATE function. This function will
be discussed in later chapters. The default date format is DD-MON-YY and the time format
is HH:MI:SS using the 12-hours clock, whereas the date format for ANSI is YYYY-MM-DD.
The valid date range is from January 1, 4712 BC to December 31, 9999 AD.

The syntax for declaring column with the DATE data type is as follows:

Column_Name DATE

In the above syntax, Column_Name specifies the name of the column having the DATE data
type. If you specify a date value without the time component, the default time will be midnight
(00:00:00 or 12:00:00 for 24-hour and 12-hour clock time, respectively). If you specify a date
value without specifying the day, then the default date will be the first day of the current
month.

TIMESTAMP
The TIMESTAMP data type stores all information that the DATE data type stores, including
the fractional part of seconds. It is an expansion of the DATE data type. It stores century,
year, month, day, hour, minute, second, and fractional seconds. This data type is useful for
storing precise time values.

The syntax for declaring a column with the TIMESTAMP data type is as follows:

Column_Name TIMESTAMP [(Fractional_Seconds_Precision)]

In the above syntax, Column_Name is the name of the column having the TIMESTAMP
data type. Fractional_Seconds_Precision is an optional value and it indicates the number of
digits that Oracle will store in the fractional part of the seconds datetime field. The value of
Fractional_Seconds_Precision can range from 0 to 9. If you do not specify this value, Oracle
will take its default value, which is 6.

2-28 Learning Oracle 11g: A PL/SQL Approach

TIMESTAMP WITH TIME ZONE
The TIMESTAMP WITH TIME ZONE data type is an alternative to the TIMESTAMP data
type. The value stored by this data type includes time zone offset. There are two ways to set
time zone: first by using the UTC offset, say ‘+10:0’, and the second is by using the name of
region, say ‘Australia/Sydney’. This data type is useful for collecting and evaluating date
information across geographic regions.

The syntax for declaring a column with the TIMESTAMP WITH TIME ZONE data type is as
follows:

Column_Name TIMESTAMP [(Fractional_Seconds_Precision)] WITH TIME ZONE

In the above syntax, Column_Name is the name of the column having the TIMESTAMP
WITH TIME ZONE data type. Fractional_Seconds_Precision is an optional value and is
used to specify the number of digits that Oracle can store in the fractional part of the seconds
datetime field. The value of Fractional_Seconds_Precision can range from 0 to 9. If you
omit this value, it will take the default value 6.

TIMESTAMP WITH LOCAL TIME ZONE
The TIMESTAMP WITH LOCAL TIME ZONE data type is another alternative to the
TIMESTAMP data type. It also includes a time zone offset in its value. Unlike the TIMESTAMP
WITH TIME ZONE data type, the TIMESTAMP WITH LOCAL TIME ZONE data type does
not store the time zone offset as part of the column data. When a user retrieves the data from
TIMESTAMP WITH LOCAL TIME ZONE data type column, Oracle returns it in the local
time zone of the client’s system in a two-tier application.

The syntax for declaring the column having the data type TIMESTAMP WITH LOCAL
TIME ZONE is as follows:

Column_Name TIMESTAMP [(Fractional_Seconds_Precision)] WITH LOCAL TIME
ZONE

In the given syntax, Column_Name is a name of the column having the TIMESTAMP WITH
LOCAL TIME ZONE data type. Fractional_Seconds_Precision is optional and is used to
specify the number of digits that can be stored in the fractional part of the seconds datetime
field. The value of Fractional_Seconds_Precision can range from 0 to 9. If you omit this
value, it will take the default value 6.

Note
The time zone offset is the difference (in hours and minutes) between the local time and UTC
(Coordinated Universal Time, formerly Greenwich Mean Time).

INTERVAL YEAR TO MONTH
The INTERVAL YEAR TO MONTH data type is used to store the period of time that
represents year and month.

Introduction to SQL *Plus 2-29

The syntax for declaring the column having the data type INTERVAL YEAR TO MONTH is
as follows:

Column_Name INTERVAL YEAR [(year_precision)] TO MONTH

In the above syntax, Column_Name is the name of the column having the INTERVAL YEAR
TO MONTH data type and year_precision is the number of digits in the YEAR datetime
field. The value of year_precision can range from 0 to 9 and its default value is 2.

INTERVAL DAY TO SECOND
The INTERVAL DAY TO SECOND data type is used to store the period of time that represents
days, hours, minutes, and seconds with a fractional part.

The syntax for declaring the column having the data type INTERVAL DAY TO SECOND is
as follows:

INTERVAL DAY [(day_precision)] TO SECOND [(fractional_seconds_precision)]

In the above syntax, day_precision is the number of digits in the day datetime field. The
value of day_precision can range from 0 to 9. If you do not specify this value, Oracle will
assign the default value 2 for this field. fractional_seconds_precision is the number of digits
in the fractional part of the second datetime field. The value of fractional_seconds_precision
can range from 0 to 9. The default value of fractional_seconds_precision is 6.

LOB
LOB stands for Large Object. It is a data type and stores unstructured information upto 4
gigabytes such as sound clips, video files, and so on. The LOB data types allow efficient,
random, and easy access to the data. The values stored in this data type are known as locators.
These locators store the locations of large objects. The location may be stored in-line (in the
database) or out-line (outside the database). The LOBs can be manipulated by using the
DBMS_LOB package and Oracle Call Interface (OCI). The LOBs can be external or internal
depending upon their locations with respect to the database.

 The LOB data types available in Oracle database are BLOB, CLOB, NCLOB, and BFILE.

BLOB
BLOB stands for Binary Large Objects. This data type is used to store binary data up to 4 GB
in length. BLOB is stored in the database.

The syntax for declaring a column with the BLOB data type is as follows:

Column_Name BLOB

In the above syntax, Column_Name is the name of a column having the BLOB data type.

2-30 Learning Oracle 11g: A PL/SQL Approach

CLOB
CLOB stands for Character Large Objects and can store character data up to 4 GB in length.
CLOB is also stored in the database.

The syntax for declaring a column with the CLOB data type is as follows:

Column_Name CLOB

In the above syntax, Column_Name is the name of the column having the CLOB data type.

BFILE
BFILE stands for Binary FILE. It is a pointer (reference) to the external file. The files
referenced by BFILE exist in the file system and enables you to access the binary file that are
stored outside the Oracle database. The database only maintains a pointer to the file. The
size of the external file is limited only by the operating system because the data is stored
outside the database.

The syntax for declaring a column with the BFILE data type is as follows:

Column_Name BFILE

In the above syntax, Column_Name is the name of the column having the BFILE data type.

NCLOB
The NCLOB data type supports both fixed-width and variable-width character sets. The
NCLOB data type can store up to 4 gigabytes of character text data.

The syntax for declaring a column with the NCLOB data type is as follows:

Column_Name CLOB

In the above syntax, Column_Name is the name of the column having the NCLOB data
type.

Note
You cannot save the BLOB, CLOB, and NCLOB locators in a PL/SQL or Oracle Call Interface
(OCI) variable in one transaction and then use it in another transaction or session. Also, you
cannot specify the object size because the database automatically allocates space to store the LOB
object.

CONSTRAINTS
Constraints are a set of predefined rules, which ensure that the valid data values are stored in
the columns of a table. Oracle provides some predefined commands that enable you to define
the constraints for a table or a column. There are two types of constraints: integrity and
value. The integrity constraints include primary key and foreign key. The value

Introduction to SQL *Plus 2-31

constraints define specific data values or data ranges. The values entered in columns should
not be Null. There are two levels of constraints: table level constraint and column level
constraint.

The table level constraints restrict the values that a table can store. These constraints can
be referred to one or more columns in a table. The table level constraint includes the
following constraints: PRIMARY KEY, UNIQUE, FOREIGN KEY, and CHECK.

The column level constraints can be referred to a single column in a table, and they do not
specify a column name, except the CHECK constraint. As a result, they limit the values that
can be placed in a specific column, irrespective of values that exist in other table rows. The
column level constraint can be one of the following: UNIQUE, NOT NULL, PRIMARY KEY,
and FOREIGN KEY.

The syntax and behavior of the table level constraint and the column level constraint is
similar with only the following difference:

1. The syntax for table level constraints is separated from the column definitions by comma.

2. The table level constraints must follow the definition of the columns to which they are
referred.

3. The table level constraint can be defined for more than one column and SQL evaluates
the constraint based on the combination of values stored in all columns.

The basic structure of a constraint used in Oracle is as follows:

The keyword CONSTRAINT is followed by a unique constraint name and then by a constraint
definition. The constraint name is used to manipulate the constraint once a table has been
created. The syntax for declaring a constraint is as follows:

CONSTRAINT [Constraint_Name] Constraint_Type

In the above syntax, Constraint_Type may be either a column level constraint
(column_constraint) or a table level constraint (table_constraint).

Note
If you omit the name of the constraint, Oracle will assign an arbitrary name to it. This
constraint name is used to drop the constraint by using the ALTER statement, which will be
discussed later in this chapter.

Tip: The column level constraints and the table level constraints have the same
functionality; the only difference between them is that the table level constraints
allow you to specify more than one column, whereas the column level constraints
refer to only one column. The table level constraints are specified at the end of the
CREATE TABLE command.

2-32 Learning Oracle 11g: A PL/SQL Approach

Integrity Constraint
An integrity constraint is a mechanism that is used by Oracle to prevent users from entering
invalid data into a table. Integrity constraints are a set of rules for columns of a table. It
includes the primary key and foreign key constraints.

Primary Key Constraint
The primary key constraints ensure that the Null values are not entered in a column and also
the value entered is unique. Thus, these constraints avoid the duplication of records. A
primary key constraint can be defined in the CREATE TABLE and ALTER TABLE
commands. This constraint can be declared at both levels: within the column level and at the
table level.

The syntax for declaring a primary key constraint at the column level is as follows:

CONSTRAINT Constraint_Name PRIMARY KEY

In the above syntax, CONSTRAINT and PRIMARY KEY are keywords and Constraint_Name
is the name of the constraint.

The syntax for declaring a primary key constraint at the table level is as follows:

CONSTRAINT Constraint_Name PRIMARY KEY (Column_Name)

In the above syntax, CONSTRAINT and PRIMARY KEY are keywords. Constraint_Name
is the name of the constraint and Column_Name is the name of the column for which you
want to declare the constraint.

You can also create a primary key constraint for more than one column. The syntax for
declaring the primary key for more than one column is as follows:

CONSTRAINT Constraint_Name PRIMARY KEY (Column_Name1,
Column_Name2, Column_Name3, Column_Name4 ...)

In the above syntax, CONSTRAINT and PRIMARY KEY are keywords and Constraint_Name
is the name of the constraint. Column_Name1, Column_Name2, Column_Name3,
Column_Name4, and so on are the names of the columns for which you want to declare the
primary key constraint.

Note
In Oracle, the primary key constraint cannot be declared for more than 32 columns.

Foreign Key Constraint
The foreign key constraint is the property that guarantees the dependency of data values of
one column of a table with another column of a table. A foreign key constraint, also known as
referential integrity constraint, is declared for a column to ensure that the value in one column

Introduction to SQL *Plus 2-33

is found in the column of another table with the primary key constraint. The table
containing the foreign key constraint is referred to as the child table, whereas the table
containing the referenced (Primary key) is referred to as the parent table. The foreign key
reference will be created only when a table with the primary key column already exists. The
foreign key constraint can be declared in two ways: within the column declaration and at the
end of the column declaration.

The syntax for using the foreign key constraint within the column declaration is as follows:

CONSTRAINT Constraint_Name REFERENCE Primary_Key_Table_Name
(Primary_Key_Column_Name)

In the above syntax, CONSTRAINT and REFERENCE are keywords, whereas
Constraint_Name is the name of the constraint and Primary_Key_Table_Name is the name
of the table that contains the referenced column. The referenced column
Primary_Key_Column_Name is the primary key of the table Primary_Key_Table_Name.

The syntax for declaring the foreign key constraint at the end of the column declaration:

CONSTRAINT Constraint_Name FOREIGN KEY (Column_Name) REFERENCE
Primary_Key_Table_Name (Primary_Key_Column_Name)

In the above syntax, CONSTRAINT, FOREIGN KEY, and REFERENCE are keywords,
whereas Column_Name is the name of the column that is declared as the foreign key.
Constraint_Name is the name of the constraint and Primary_Key_Table_Name is the name
of the table that contains the referencing column. The referencing column is the primary key
of the table Primary_Key_Table_Name. And, Primary_Key_Column_Name is the name of
the primary key column of the table Primary_Key_Table_Name.

Note
If you declare the foreign key constraint at the column level, the column name is not required.
Also, in a foreign key constraint, you cannot use the keyword FOREIGN KEY.

Value Constraint
Value constraints are column level constraints. The value constraints include the CHECK,
NOT NULL, DEFAULT, and UNIQUE constraints. These constraints are discussed next.

NOT NULL Constraint
A column in a table can be declared with the NOT NULL constraint. On declaring this
constraint, you cannot insert Null value in the column. You can add this constraint while
creating the table by using the CREATE TABLE command. You can also add this constraint
after creating the table by using the ALTER command. The ALTER command will be discussed
later in the chapter.

The syntax for declaring the NOT NULL constraint within the column declaration is as
follows:

2-34 Learning Oracle 11g: A PL/SQL Approach

CONSTRAINT Constraint_Name NOT NULL

In the above syntax, CONSTRAINT is a keyword and Constraint_Name is the name of the
constraint.

For example:

Last_Name VARCHAR2(30) CONSTRAINT L_Name NOT NULL

In the above example, the column Last_Name is declared with the NOT NULL constraint
named L_Name. The L_Name constraint ensures that you cannot insert a Null value in the
column Last_Name.

CHECK Constraint
The CHECK constraint ensures that all values inserted into the column satisfy the specified
condition. This constraint checks data against the expression defined in the INSERT and
UPDATE statement. The CHECK constraint can be declared at the column level.

The syntax for declaring the CHECK constraint within the column declaration is as follows:

CONSTRAINT Constraint_Name CHECK(Col_Condition)

In the above syntax, CONSTRAINT and CHECK are keywords. Constraint_Name is the
name of the constraint and Col_Condition is the rule or the condition for entering values in
the column.

For example:

Commission NUMBER Check_Column_Value CHECK(Commission>500)

In the above example, the Commission column is declared with the CHECK constraint
Check_Column_Value, which ensures that the data values entered in the Commission column
are greater than 500.

UNIQUE Key Constraint
The UNIQUE key constraint is used to prevent the duplication of data values within the rows
of a specified column or a set of columns in a table. The column defined with the UNIQUE
key constraint can also allow a null value. Moreover, this constraint can be added to the
existing columns. The UNIQUE key constraint can be declared both at the column level and
the table level.

The syntax for declaring the UNIQUE key constraint at the column level is as follows:

CONSTRAINT Constraint_Name UNIQUE

In the above syntax, CONSTRAINT and UNIQUE are keywords and Constraint_Name is
the name of the constraint.

Introduction to SQL *Plus 2-35

For example:

First_Name VARCHAR2(50) CONSTRAINT Unique_FirstName UNIQUE

In the above example, the column First_Name is defined with the UNIQUE key constraint
Unique_FirstName, which stores the first name of an employee. The constraint
Unique_FirstName ensures that you cannot enter the same data in the column First_Name.

The syntax for declaring the UNIQUE key constraint at the table level is as follows:

CONSTRAINT Constraint_Name UNIQUE(Column_Name)

In the above syntax, Constraint_Name is the name of the constraint and Column_Name is
the name of the column for which the UNIQUE key constraint is declared. The declaration
of the UNIQUE key constraint at the table level is made at the end of the declaration of
columns.

For example:

CONSTRAINT Unique_FirstName UNIQUE (First_Name)

In the above example, the constraint Unique_FirstName is declared for the column
First_Name. This constraint ensures that you cannot enter the same data values in the
column First_Name.

DEFAULT Constraint
The DEFAULT constraint is used to set the default value for a column. This constraint ensures
that a default value is set automatically by Oracle for each column of a table. The DEFAULT
constraints are declared at the column level declaration.

The syntax for declaring the DEFAULT constraint is as follows:

DEFAULT ‘default_value’

In the above syntax, DEFAULT is a keyword and default_value is the value set as the default
value for a column.

For example:

Country VARCHAR2 (50) DEFAULT ‘USA’

In the above example, the column Country is declared with the DEFAULT constraint. If a
user enters a Null value in this column, then Oracle will insert a default value other than the
Null value. But, if the user enters a data value rather than the Null value, the default value
will be replaced by the data value entered by the user.

2-36 Learning Oracle 11g: A PL/SQL Approach

CREATING A TABLE
A table is the basic unit of data storage in the Oracle database. Database holds data in the
tabular form, which is in rows and columns. A table such as an Employee table can
contain various columns such as Emp_ID, First_Name, Last_Name, and so on. Each column
has a width and data types, such as VARCHAR2, DATE, NUMBER, and so on. The width can
be pre-determined by the data type, as in case of the data type DATE. But, if a column has
a NUMBER data type, you can define precision and scale instead of width.

A row is a set of columns corresponding to a single record. A table can contain number of
such records. For each column, you can specify rules, called integrity constraints. For example,
the NOT NULL constraint ensures that each column of a row contains some data values.

Once a table has been created with columns and rows, you can retrieve, delete, or update
data using the SQL statements. This will be discussed in later chapters. While creating a
table, the naming convention for tables and columns should be properly followed. The
naming conventions used while creating tables and columns are as follows:

1. The table and column names can be up to 30 characters long.

2. The table and column names must begin with an alphabet.

3. Names cannot contain quotes.

4. Names are not case-sensitive.

5. Names can contain characters a to z, 0 to 9, _, $, and #.

6. The reserve words used in Oracle cannot be used as names of columns or tables.

The syntax for creating a table in Oracle is as follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Datatype (width),
Field_Name2 Field_Datatype (width),
Field_Name3 Field_Datatype (width),
Field_Name4 Field_Datatype (width),
.......
.......
);

In the above syntax, CREATE and TABLE are keywords and Table_Name is the name of the
table to be created. Field_Name1, Field_Name2, Field_Name3, and Field_Name4 are the
names of columns. Field_Datatype represents the data type of the column and width represents
the length of the column.

Introduction to SQL *Plus 2-37

For example:

To create a table Student containing student data such as roll number, name, date of birth,
and so on, you need to follow the steps given below:

1. Enter the CREATE TABLE command at the SQL prompt, as shown Figure 2-12.

Note
You are recommended not to enter line numbers in SQL *Plus.

2. Enter ; (semi colon) at the end of the last line. It marks the end of the SQL command.

3. To execute command lines, press ENTER. If there is no error in the command lines,
Oracle will return a message, Table created, which confirms that the table has been
created.

4. To check whether the Student table has been created, enter the following command in
the SQL *Plus window:

SQL>DESC Student;

5. After entering the command in SQL *Plus, press ENTER; the output will be
displayed immediately after this command line, refer to Figure 2-13.

Figure 2-12 The Student table created using the CREATE TABLE command

Figure 2-13 Using the DESC command

2-38 Learning Oracle 11g: A PL/SQL Approach

Creating a Table with the Primary Key Constraint
You can create a table with the primary key constraint in two ways: by declaring the column with
the primary key constraint at the column level and by declaring constraint at the table level.

The syntax for creating a table with the primary key constraint declared at the column level
is as follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Datatype (width) CONSTRAINT Constraint_Name PRIMARY
KEY,
Field_Name2 Field_Datatype (width),
Field_Name3 Field_Datatype (width),
.......
.......
)

In the above syntax, CREATE TABLE, CONSTRAINT, and PRIMARY KEY are keywords;
Table_Name is the name of the table to be created; Field_Name1, Field_Name2, and
Field_Name3 are names of the columns; Field_Datatype is the data type of specific columns;
and Constraint_Name is the name of the primary key constraint. Here, the primary key
constraint ensures that the column value is not Null and the values in that column are unique.

The syntax for creating a table with the primary key constraint declared at the table level is as
follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Datatype (width)
Field_Name2 Field_Datatype (width),
Field_Name3 Field_Datatype (width),
Field_Name4 Field_Datatype (width),
.......,
.......,
CONSTRAINT Constraint_Name PRIMARY KEY(Field_Name)
)

In the above syntax, CREATE TABLE, CONSTRAINT, and PRIMARY KEY are keywords
and Table_Name is the name of the table to be created. Field_Name1, Field_Name2,
Field_Name3 and Field_Name4 are names of columns; Field_Datatype is the data type of
the specific column; Constraint_Name is the name of the primary key constraint; and
Field_Name is the name of the column or field declared as the primary key.

For example:

To create a table Student containing the student data such as roll number, name, and date of
birth with roll number as its primary key, you need to follow the steps given below:

Introduction to SQL *Plus 2-39

1. In SQL *Plus, enter the CREATE TABLE command at the SQL prompt, as shown in
Figure 2-14 and Figure 2-15.

Figure 2-14 shows the CREATE TABLE command with the primary key constraint
declared at the column level.

Figure 2-15 shows the CREATE TABLE command with the primary key constraint
declared at the table level.

2. Enter ; (semi colon) at the end of the last line. It marks the end of the SQL command.

3. To execute command lines, press ENTER. If there is no error in the command lines,
Oracle will return the message, Table created, which confirms that the table has been
created.

The following CREATE TABLE command will create a table with the primary key
constraint declared for more than one field:

CREATE TABLE supplier
(

Figure 2-14 The CREATE TABLE command with the primary key constraint declared at
the column level

Figure 2-15 The CREATE TABLE command with the primary key constraint declared at
the table level

2-40 Learning Oracle 11g: A PL/SQL Approach

Supplier_ID NUMERIC(10) NOTNULL,
Supplier_Name VARCHAR2(50) NOTNULL,
Contact_Name VARCHAR2(50),
CONSTRAINT Supplier_PK PRIMARY KEY (Supplier_ID, Supplier_Name)
);

Creating a Table with the Foreign Key Constraint
You can create a table with the foreign key constraint in two ways: by declaring the column with
foreign key constraint at the column level and by declaring constraints at the table level.

The syntax for creating a table with the foreign key constraint declared at the column level is
as follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Datatype (width) CONSTRAINT Constraint_Name REFERENCE
Primary_Key_Table_Name (Primary_Key_Column_Name),
Field_Name2 Field_Datatype (width),
Field_Name3 Field_Datatype (width),
.......
.......
);

In the above syntax, CREATE TABLE, CONSTRAINT, and REFERENCE are keywords
and Table_Name is the name of the table to be created. Field_Name1, Field_Name2, and
Field_Name3 are the names of columns; Field_Datatype is the data type of specific column;
Constraint_Name is the name of the foreign key constraint; Primary_Key_Table_Name is
the name of the parent table having primary key column; and Primary_Key_Column_Name
is the name of the primary key column of the Primary_Key_Table_Name table.

The syntax for creating a table with the foreign key constraint declared at the table level is as
follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Datatype (width),
Field_Name2 Field_Datatype (width),
Field_Name3 Field_Datatype (width),
.......
.......
CONSTRAINT Constraint_Name FOREIGN KEY (Column_Name) REFERENCE
Primary_Key_Table_Name (Primary_Key_Column_Name)
)

In the above syntax, CREATE TABLE, CONSTRAINT, and REFERENCE are keywords
and Table_Name is the name of the table to be created. Field_Name1, Field_Name2, and

Introduction to SQL *Plus 2-41

Field_Name3 are the names of columns; Field_Datatype is the data type of specific
columns; Constraint_Name is the name of the foreign key constraint;
Primary_Key_Table_Name is the name of the parent table having the primary key column;
and Primary_Key_Column_Name is the name of the primary key column of the
Primary_Key_Table_Name table.

For example:

To create a table that contains customer’s address with reference to their Dealers, you need to
follow the steps given below.

1. Enter the command lines given in Figure 2-16 or Figure 2-17 at the SQL prompt.

Figure 2-16 shows the CREATE TABLE command with the foreign key constraint
declared at the column level.

Figure 2-16 The CREATE TABLE command with the foreign key constraint declared at
the column level

Figure 2-17 The CREATE TABLE command with the foreign key constraint declared
at the table level

2-42 Learning Oracle 11g: A PL/SQL Approach

Figure 2-17 shows the CREATE TABLE command with the foreign key constraint
declared at the table level.

2. Enter ; (semi colon) at the end of the last line. It marks the end of the SQL command.

3. To execute command lines, press ENTER. If there is no error in the command lines, the
Oracle will return a message Table created, which confirms that the table has been created.

Creating a Table with the NOT NULL Constraint
You can create a table with the NOT NULL constraint by declaring it at the column level.

The syntax for creating the table with the NOT NULL constraint is as follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Type (width) Constraint Constraint_Name NOT NULL,
Field_Name2 Field_Type (width),
Field_Name3 Field_Type (width),
Field_Name4 Field_Type (width),
(Col_Condition)
...........
............
);

In the above syntax, Field_Name1, Field_Name2, Field_Name3, and Field_Name4 are the
names of columns; Field_Type is the data type of columns; width is the length of columns;
and Constraint_Name is the name of the constraint declared for the column.

For example:

To create a table that contains customer’s address with the NOT NULL constraint, you need
to follow the steps given below:

1. Enter the CREATE TABLE command at the SQL prompt, as shown in Figure 2-18.

2. Enter ; (semi colon) at the end of the last line. It marks the end of the SQL command.

3. To execute command lines, press ENTER.

In the above example, the NOT NULL constraint Cust_NotNull ensures that the value for
the column CUST_NO should not allow Null values.

Introduction to SQL *Plus 2-43

Creating a Table with the DEFAULT Constraint
You can create a table with the DEFAULT constraint by declaring the column with DEFAULT
constraint at the column level.

The syntax for creating the table with DEFAULT constraint is as follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Type (width),
Field_Name2 Field_Type (width) Constraint Constraint_Name Default ‘default_value’,
Field_Name3 Field_Type (width),
Field_Name4 Field_Type (width),
...........
............
)

In the above syntax, Field_Name1, Field_Name2, Field_Name3, and Field_Name4 are the
name of the columns; Field_Type is the data type of the columns; width is the length of
columns; and Constraint_Name is the name of the constraint declared for the column.

For example:

To create a table to store customer’s address with California as the default value for the state,
you need to follow the steps given below.

1. Enter the CREATE TABLE command at the SQL prompt, as shown in Figure 2-19.

2. Enter ; (semi colon) at the end of the last line. It marks the end of the SQL command.

3. To execute command lines, press ENTER. If there is no error in the command lines,
Oracle will return the message Table created, which confirms that the table has been
created.

Figure 2-18 The CREATE TABLE command with the NOT NULL constraint

2-44 Learning Oracle 11g: A PL/SQL Approach

Creating a Table with the UNIQUE and CHECK Constraints
You can create a table with the UNIQUE and CHECK constraints by declaring the column with
the UNIQUE and CHECK constraints at the column level.

The syntax for creating the table with the UNIQUE and CHECK constraints is as follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Type (width),
Field_Name2 Field_Type (width),
Field_Name3 Field_Type (width),
Field_Name4 Field_Type (width) Constraint Constraint_Name CHECK
(Col_Condition)
...........
............
);

In the above syntax, Field_Name1, Field_Name2, Field_Name3, and Field_Name4 are the
names of columns; Field_Type is the data type of columns; width is the length of columns;
and Constraint_Name is the name of the constraint declared for the column.

For example:

CREATE TABLE Customer
(
CUST_NO NUMBER (5) CONSTRAINT Cust_NotNull NOT NULL,
FIRST_NAME NVARCHAR2 (30) CONSTRAINT Unique_FName UNIQUE,
LAST_NAME NVARCHAR2 (30),
ADDRESS NVARCHAR2 (50),
CITY NVARCHAR2 (30),

Figure 2-19 The CREATE TABLE command with the DEFAULT constraint

Introduction to SQL *Plus 2-45

STATE NVARCHAR2 (30) DEFAULT ‘California’,
ZIP NVARCHAR2 (10),
BIRTH_DATE DATE,
STATUS VARCHAR2 (1) CONSTRAINT Check_Status CHECK(STATUS
IN(‘V’, ‘I’,‘A’))
);

In the above example, the NOT NULL constraint Cust_NotNull ensures that the value for
the specified column CUST_NO does not allow Null values. Moreover, the UNIQUE
constraint Unique_FName does not allow duplicate values in the rows of the column
FIRST_NAME. If you do not enter data values for the column STATE, it will take the default
value because of the DEFAULT constraint. The CHECK constraint Check_Status ensures
that the data values for the column STATUS should be ‘V’, ‘I’ or ‘A’. If you enter a value
other than ‘V’, ‘I’ or ‘A’, then Oracle will throw an error.

Creating a Table from an Existing Table
You can also create a table from an existing table by copying the columns of an existing table.

The syntax for copying all columns from an existing table is as follows:

CREATE TABLE new_table
AS (SELECT * FROM existing_table);

In the above syntax, new_table is the name of the table to be created from the existing table
existing_table.

For example:

CREATE TABLE Dealer
AS (SELECT * FROM Customer);

The above SQL statement will create a new table called Dealer. This new table will include all
columns of the Customer table.

If the Customer table has records, the new table Dealer will also contain the records selected
by the SELECT statement.

The syntax for copying the selected columns of an existing table is as follows:

CREATE TABLE new_table
AS (SELECT column1, column2, ... column_n FROM existing_table);

In the above syntax, new_table is the name of the new table to be created; existing_table is
the name of the existing table; and column1, column2, ... column_n represent the column
names.

2-46 Learning Oracle 11g: A PL/SQL Approach

For example:

CREATE TABLE Dealer
AS (SELECT ID, Address, City, State, Country FROM Customer);

The above SQL statement will create a new table called Dealer. But, the new table will only
include the specified columns of the Customer table.

Again, if the Customer table has records, the new table Dealer will also contain the records
selected by the SELECT statement.

You can copy the selected columns from the multiple tables, by using the following syntax:

CREATE TABLE new_table
AS (SELECT column_1, column2, ... column_n
FROM old_table_1, old_table_2, ... old_table_n);

For example:

CREATE TABLE Emp_Dept
AS (SELECT Emp.Empno, Emp.Ename, Emp.Sal, Emp.Job,
Dept.Deptno, Dept.Dname, Dept.Loc
FROM Emp, Dept
WHERE Emp.Deptno = Dept.Deptno AND Emp.Empno < 10);

The above SQL statement will create a new table, called Emp_Dept, based on the columns
from both the Emp and Dept tables.

You can also copy the structure of an existing table by using the following syntax:

CREATE TABLE new_table
AS (SELECT * FROM old_table WHERE 1=2);

For example:

CREATE TABLE Emp_Audit
AS (SELECT * FROM Employee WHERE 1=2);

The above SQL statement will create a new table, called Emp_Audit. This table will contain
all columns of the table Employee, except the data rows.

You can copy the selected columns from an existing table, excluding the data, by using the
following syntax:

CREATE TABLE new_table
AS (SELECT column_1, column2, ... column_n FROM existing_table
WHERE 1=2);

Introduction to SQL *Plus 2-47

For example:

CREATE TABLE Dealer
AS (SELECT ID, Address, City, State, Country FROM Customer
WHERE1=2);

The above SQL statement will create a new table, called Dealer. This new table will include only
the specified columns of the table Customer, except the data rows.

MODIFYING AND DELETING A DATABASE TABLE
You can modify the structure of an existing database table by using the ALTER command.
This command is used to add new columns, modify existing columns, change the width of a
data type, and add or drop integrity constraints. You can also delete an existing table by
using the DELETE command.

In this section, you will learn how to delete and rename an existing table, add or delete
columns from it, and modify its definition and constraints.

Deleting and Renaming Existing Tables
You can use the DROP TABLE command to delete or remove the database tables. The
syntax for using the DROP TABLE command is as follows:

DROP TABLE Table_Name;

In the above syntax, DROP and TABLE are keywords and Table_Name is the name of the
table to be deleted or removed from the database.

If any column of the table Table_Name has a reference in another table, the DROP TABLE
command cannot delete or remove the table Table_Name from the database.

To drop a table that has a reference in another table, you can use the following two methods:

The first method is to delete or remove all tables that have foreign key references with other
tables.

The second method is that you have to drop all references or foreign key constraints that
refer to other table. To avoid such a situation, Oracle provides the DROP TABLE command
with the CASCADE CONSTRAINTS option. The CASCADE CONSTRAINTS option is
used to delete the table that has the foreign key constraint references. The syntax for using
the CASCADE CONSTRAINTS option with the DELETE statement is as follows:

DROP TABLE Table_Name CASCADE CONSTRAINTS;

In the above syntax, DROP, TABLE, CASCADE, and CONSTRAINTS are keywords and
Table_Name is the name of the table to be deleted or removed from the database.

2-48 Learning Oracle 11g: A PL/SQL Approach

For example:

DROP TABLE Customer;

After executing the above statement, Oracle will throw an error because of its foreign key
reference with the Dealer table. Therefore, to remove the table Customer, you need to use
the DROP TABLE command with the CASCADE CONSTRAINTS option, as given below:

DROP TABLE Customer CASCADE CONSTRAINTS;

Now, the table will be deleted.

The RENAME command is used to rename an existing database table. The syntax for using
the RENAME command is as follows:

RENAME Old_Table_Name TO New_Table_Name;

In the above syntax, RENAME and TO are keywords; Old_Table_Name is the name of the
table to be renamed; and New_Table_Name is the new name for the Old_Table_Name table.

For example:

To rename a table Emp to Employee, you need to follow the steps given below:

1. To rename the Emp table, enter the following command at the SQL prompt.

RENAME Emp TO Employee;

2. Press ENTER to execute the above statement. After executing the statement, Oracle
will return a message, Table renamed, which confirms that the table name Emp is replaced
with Employee.

Adding and Modifying Existing Columns
You can add new columns to the existing table by using the ALTER TABLE command with
the ADD option. The syntax for using the ALTER TABLE command with the ADD option is
as follows:

ALTER TABLE Table_Name ADD(Column_Name Column_Type Constraints);

In the above syntax, Table_Name is the name of an existing table to which you want to add
the new column; Column_Name is name of the new column; Column_Type is the data type
of the new column Column_Name; and Constraints is any constraint that you want to set for
the new column.

For example:

Introduction to SQL *Plus 2-49

To add a new column STATUS to the Customer table, you need to follow the steps given
below:

1. In SQL *Plus, enter the ALTER TABLE command, as shown in Figure 2-20, to add a
new column in the table Customer.

2. Press ENTER to execute the above statement. On executing the statement, Oracle
will return a message, Table altered, which confirms that the new column STATUS has
been added to the table Customer.

You can also modify a column of an existing table by using the ALTER TABLE command
with the MODIFY option. The syntax for using the ALTER TABLE command with the
MODIFY option is as follows:

ALTER TABLE Table_Name MODIFY(Column_Name New_Data_Definition);

In the above syntax, Table_Name is the name of the existing table to be modified;
Column_Name is the name of the column of the existing table that you want to modify; and
New_Data_Definition is the new data type definition of the existing column.

For example:

To change the width of the column Cust_Add of the table Customer, you need to follow the
steps given below:

1. In SQL *Plus, enter the ALTER TABLE command, as shown in Figure 2-21, to modify
the column Cust_Add of the table Customer.

2. Press ENTER to execute the statement. After executing the statements, Oracle will return
a message Table altered, refer to Figure 2-21, which confirms that the column Cust_Add
of the table Customer has been modified.

Figure 2-20 The ALTER TABLE command with the ADD option

2-50 Learning Oracle 11g: A PL/SQL Approach

Deleting and Renaming the Columns of an Existing Table
You can delete an existing column from the database table by using the ALTER TABLE
command with the DROP option. The syntax for using the ALTER TABLE command with
the DROP option is as follows:

ALTER TABLE Table_Name DROP COLUMN Column_Name;

In the above syntax, Table_Name is the name of the existing table from which you want to
delete or remove a column and Column_Name specifies the name of the column that you
want to delete or remove from the table Table_Name.

For example:

To delete the column PIN from the table Customer, you need to follow the steps given
below:

1. Enter the following command in SQL *Plus to delete the column from the table:

ALTER TABLE Customer DROP COLUMN ZIP;

2. Press ENTER to execute the above statement. After executing the statement, Oracle
will return a message, Table altered, which confirms that the column ZIP has been deleted
from the table Customer.

You can also rename an existing column in the table by using the ALTER TABLE command
with the RENAME option.

The syntax for using the ALTER TABLE command with the RENAME option is as follows:

ALTER TABLE Table_Name RENAME COLUMN Old_Column_Name TO
New_Column_Name

In the above syntax, Table_Name is the name of the table in which you want to rename a
column. Here, Old_Column_Name is the name of column that you want to rename and
New_Column_Name is the new name of the Old_Column_Name column.

Figure 2-21 The ALTER TABLE command with the MODIFY option

Introduction to SQL *Plus 2-51

For example:

To rename the column Cust_Address to Cust_Add in the table Customer, you need to follow
the steps given below:

1. Enter the following command in SQL *Plus to rename the column in the table Customer:

ALTER TABLE Customer RENAME COLUMN Cust_Add TO Cust_Address;

2. Press ENTER to execute the above statement; Oracle will return a message, Table altered,
which confirms that the table Customer has been altered.

3. To check whether the name of the column has been changed, enter the following
statement in SQL *Plus, as shown in Figure 2-22.

SQL>DESC Customer;

On doing so, the description of the Customer table will be displayed, refer to Figure 2-22
with the name of column Cust_Address modified.

Adding and Deleting Constraints
You can remove an existing constraint from a database table by using the ALTER TABLE
command with the DROP option.

The syntax for using the ALTER TABLE command with the DROP option is as follows:

ALTER TABLE Table_Name DROP CONSTRAINT Constraint_Name;

In the above syntax, Table_Name is the name of an existing table from which you want to
remove the constraint and Constraint_Name is the name of the constraint that you want to
remove.

Figure 2-22 The description of the table Customer

2-52 Learning Oracle 11g: A PL/SQL Approach

For example:

To delete the constraint CHECK named Check_Status from the table Customer, you need
to follow the steps given below:

1. Enter the following command in SQL *Plus to delete the constraint Check_Status from
the table Customer:

ALTER TABLE Customer DROP CONSTRAINT Check_Status;

2. Press ENTER to execute the above statement; Oracle will return a message, Table altered,
which confirms that the Check_Status constraint has been removed from the table
Customer.

On doing so, the description of the table Customer will be displayed without the constraint
Check_Status.

You can also add a constraint to the existing column of the table by using the ALTER
command with the ADD option. The syntax for using the ALTER command with the ADD
option is as follows:

ALTER TABLE Table_Name ADD CONSTRAINT Constraint_Name
Constraint_declaration;

In the above syntax, Table_Name is the name of the table to which you want to add a constraint;
Constraint_Name is the name of the new constraint; and Constraint_Declaration specifies
the constraint type.

For example:

To add the primary key constraint to the table Customer, enter the following statement in
SQL *Plus:

ALTER TABLE Customer ADD CONSTRAINT Primary_Key_Id PRIMARY
KEY (Cust_No);

To check whether the constraint has been added, enter the following statement in SQL *Plus:

SQL>DESC Customer;

On doing so, the description of the table Customer will be displayed with the primary key
constraint added to it.

Similarly, to add the foreign key constraint to the table Customer, you need to enter the
following statements in SQL *Plus:

Introduction to SQL *Plus 2-53

ALTER TABLE Customer ADD CONSTRAINT Foreign_key
FOREIGN KEY (Cust_No) REFERENCES Supplier ON DELETE CASCADE;

Enabling and Disabling Constraints
You can enable or disable the constraints by using the ALTER command with the ENABLE
and DISABLE option. The syntax for using the ALTER command with the ENABLE option
is as follows:

ALTER TABLE Table_Name ENABLE CONSTRAINT Constraint_Name;

In the above syntax, Table_Name is the name of the table on which you want to enable the
constraints and Constraint_Name is the name of the constraint to be enabled.

The syntax for using the ALTER command with the DISABLE option is as follows:

ALTER TABLE Table_Name DISABLE CONSTRAINT Constraint_Name;

In the above syntax, Table_Name is the name of the table on which you want to disable the
constraints and Constraint_Name is the name of the constraint to be disabled.

For example:

To enable the primary key constraint of the table Customer, enter the following statements
in SQL *Plus:

ALTER TABLE Customer ENABLE CONSTRAINT Cust_PrimaryKey;

After the execution of the above statement, the Cust_PrimaryKey constraint will be enabled.
Similarly, enter the following statement in SQL *Plus to disable the primary key constraint:

ALTER TABLE Customer DISABLE CONSTRAINT Cust_PrimaryKey;

After the execution of the above statement, the Cust_PrimaryKey constraint will be disabled.

The following example will illustrate how to create a table and then add columns and
constraints, alter columns and constraints, drop columns and constraints in it.

Write a query to create a table Employee and use the ALTER and DROP commands to add
and drop columns and constraints in it.

The following steps are required to create the table and then alter, modify, and drop constraints
and columns in it.

1. Enter the following command in SQL *Plus to create the table Employee:

Example 3

2-54 Learning Oracle 11g: A PL/SQL Approach

CREATE TABLE Employee (
Empno NUMBER(4),
Ename VARCHAR2(10),
 Job VARCHAR2(9),
MGR NUMBER(4),
HireDate DATE,
Salary NUMBER(7, 2),
Comm NUMBER(7, 2),
Deptno NUMBER(2)
);

The above command CREATE TABLE will create the table Employee, as shown in
Figure 2-23.

2. Now, you can add the column Address in the Employee table by entering the following
command in SQL *Plus:

ALTER TABLE Employee ADD(Address NVARCHAR2(80));

The above command will add the new column Address to the table Employee, as shown
in Figure 2-24.

Figure 2-23 Creating the table Employee

Figure 2-24 Adding new column to the Employee table

Introduction to SQL *Plus 2-55

3. You can also modify the width of the column Ename in the Employee table by entering
the following command in SQL *Plus:

ALTER TABLE Employee MODIFY(Ename NVARCHAR2(20));

The above command will modify the column Ename of the table Employee, as shown in
Figure 2-25.

4. You can also rename the column Address to Emp_Address of the Employee table by
entering the following command in SQL *Plus:

ALTER TABLE Employee RENAME COLUMN Address TO
Emp_Address;

The above command will rename the column Address to Emp_Address of the table
Employee, as shown in Figure 2-26.

5. After creating the table Employee, you can add the primary key constraint to the column
Empno. To do so, enter the following command in SQL *Plus:

ALTER TABLE Employee ADD CONSTRAINT Prmy_Empno PRIMARY
KEY (Empno);

Figure 2-25 Modifying the Ename column of the table Employee

Figure 2-26 Renaming the column Address to Emp_Address of the Employee table

2-56 Learning Oracle 11g: A PL/SQL Approach

The above command will add the primary key Prmy_Empno to the table Employee on
the column Empno, as shown in Figure 2-27.

6. Now, you can disable or enable constraints on the table Employee by entering the following
command in SQL *Plus:

ALTER TABLE Employee DISABLE CONSTRAINT Prmy_Empno;

The above command will disable constraint Prmy_Emp of the table Employee in the
column Empno, as shown in Figure 2-28.

ALTER TABLE Employee ENABLE CONSTRAINT Prmy_Empno;

The above command will enable the constraint Prmy_Emp of the table Employee on
the column Empno, refer to Figure 2-28.

Figure 2-27 Adding the primary key constraint to the Employee table

Figure 2-28 Disabling and enabling the constraint Prmy_Empno

Introduction to SQL *Plus 2-57

Answer the following questions and then compare them to those given at the end of this
chapter:

1. The ______________ command is used to read the contents of the SQL buffer.

2. The ______________ command is used to view the structure of a database table.

3. The / command is used to execute the current command in the _________________.

4. The NOT NULL constraint is a column level constraint. (T/F)

5. The DEFAULT constraint is used in a column to ensure that a Null value is not contained in
that column. (T/F)

6. The APPEND command is used to find and replace a string in the current line of the
SQL buffer. (T/F)

7. The START command is used to execute the contents of a file. (T/F)

8. Which of the following commands is used to add lines to the existing command in the
buffer?

(a) GET (b) START
(c) INPUT (d) All the above

9. Which of the following commands is used to display the content of the buffer?

(a) EDIT (b) CHANGE
(c) LIST (d) None of these

10. Which of the following is character data type?

(a) NVARCHAR2 (b) CHAR
(c) Both (a) & (b) (d) None of these

Answer the following questions:

1. The BINARY_DOUBLE value requires _________ bytes.

2. The BINARY_FLOAT value requires _________ bytes.

3. The BLOB stands for _____________________.

Self-Evaluation Test

Review Questions

2-58 Learning Oracle 11g: A PL/SQL Approach

4. The ______________ command is used to change the name of a column.

5. The ______________ command is used to delete the current line from the buffer.

6. BLOB data type can store data up to ______ in length.

7. Which of the following ALTER TABLE options is used to remove a column from a
database table?

(a) DROP (b) MODIFY
(c) DELETE (d) All the above

8. Which of the following constraints allows a Null value?

(a) DROP (b) MODIFY
(c) DELETE (d) All the above

9. Which of the following commands is used to exit from the SQL *Plus or from command
line?

(a) QUIT (b) END
(c) EXIT (d) All the above

10. Which of the following is the default date format of the DATE data type?

(a) DD-MM-YY (b) DD-MON_YYYY
(c) DD-MON-YY (d) None of these

Create a table with the name Employee having the following columns Empid, Ename,
Designation, Salary, Commission, Deptno. Also, declare a primary key constraint for the
Empid column.

Answers to Self-Evaluation Test
1. GET, 2. DESC, 3. SQL buffer, 4. T, 5. F, 6. F, 7. T, 8. c, 9. c, 10. c

Exercise 1

Exercise

