
Retrieving Data
in SQL

After completing this chapter, you will be able to:
• Use the SELECT statement.
• Work with SQL operators.
• Understand the Set operators (UNION, UNION ALL,
 INTERSECT, and MINUS).
• Understand the operator precedence.
• Understand Subqueries.
• Learn about JOINs.
• Work with the table and column aliases.

Learning Objectives

 Chapter 3

3-2 Learning Oracle 11g: A PL/SQL Approach

THE SELECT STATEMENT
The SELECT statement is the most popular SQL statement used for querying a table. This
statement is used to retrieve or view the data of one or more tables. The syntax for using
the SELECT statement is as follows:

SELECT *
FROM Table_Name;

In the above syntax, SELECT and FROM are keywords and Table_Name is the name of the
table from which you want to view data rows. * (asterisk) is also a keyword and is used to
retrieve data from all columns or fields of a table.

For example:

Enter the following query in SQL *Plus to get employee records, as shown in Figure 3-1.

SELECT * FROM Emp;

Figure 3-1 shows the output of the above query when you execute it.

The above SQL query retrieves all information contained within the Emp table. Note that
the asterisk is used as a wildcard in SQL. Literally, it means "Select all records from the a
table."

You can use the following syntax to limit the attributes retrieved from a table:

Figure 3-1 The rows retrieved from the Emp table

Retrieving Data in SQL 3-3

SELECT Column1, Column2, ...
FROM Table_Name;

In the above syntax, SELECT and FROM are keywords and Column1, Column2, ... are the
names of the columns from which you want to retrieve data. Table_Name is name of the table
from which you want to retrieve data.

For example:

The Human Resources department may require a list of names of all employees of a company.
You can retrieve the required information using the following SQL statement:

SELECT Ename FROM Emp;

Selecting Distinct Rows
You can retrieve distinct rows from a table by using the DISTINCT clause with the SELECT
statement. Retrieving distinct rows from the table prevents the selection of duplicate rows.
Following is the syntax for using the DISTINCT clause with the SELECT statement:

SELECT DISTINCT Column_Name
FROM Table_Name;

In the above syntax, Column_Name is the name of the column from which you want to
retrieve distinct values and Table_Name is the name of the table which contains the column
Column_Name.

Note
You can also use the UNIQUE keyword instead of the DISTINCT keyword to prevent the
selection of duplicate rows.

For example:

Enter the following query in SQL *Plus and then execute it. The output of the query will be
displayed, as shown in Figure 3-2.

SELECT Job FROM Emp;

This query will retrieve a list of jobs. Notice that the jobs ANALYST, CLERK, MANAGER,
and SALESMAN appear more than once. Now, if you want to retrieve the list of different jobs
with no job being repeated in the list, use the DISTINCT clause with the SELECT statement,
as shown below. Figure 3-3 shows the output of the following query:

SELECT DISTINCT Job FROM Emp;

The above query retrieves all distinct job names from the Emp table.

3-4 Learning Oracle 11g: A PL/SQL Approach

Selecting Rows with the WHERE Clause
The WHERE clause is used with the SELECT, DELETE, or UPDATE statement to select,
delete, or update the data from a table on the basis of a condition. Also, this clause is used to
filter the data from the database. The WHERE clause selects, deletes, or updates only those
rows in which expressions evaluate to true. The syntax for using the WHERE clause is as
follows:

SELECT Column_Name
FROM Table_Name
WHERE Column_Name/Expression Operator Value/Expression;

In the above syntax, SELECT, FROM, and WHERE are the keywords; Column_Name is the
name of the column that you want to select from the table; and Table_Name is the name of

Figure 3-2 Output with duplicate rows

Figure 3-3 Output with distinct rows

Retrieving Data in SQL 3-5

the table. The WHERE clause used with both the DELETE and UPDATE statements will
be discussed later in this chapter.

For example:

Enter the following command lines in SQL *Plus and then execute them. The output of the
query will be displayed, as shown in Figure 3-4.

SQL> SELECT Empno, Ename “Name”, HireDate “Join Date”, Sal “Salary”, Job
FROM Emp WHERE Job= ‘MANAGER’;

In the above SQL statement, the WHERE clause filters the results set from the Emp table.
The above SQL statement will return all rows having the job Manager from the Emp table.

Note
The column alias used in the above query such as Name, Join Date, and Salary will be
discussed later in this chapter

SQL OPERATORS
The following operators in Oracle are supported by SQL *Plus:

1. Arithmetic Operators
2. Comparison Operators
3. Logical Operators
4. Other operators
5. Set Operators

These operators are discussed next.

Arithmetic Operators
The Oracle database uses arithmetic expressions in SQL commands to perform calculations,
based on numeric values. An arithmetic expression consists of column names connected with

Figure 3-4 The SELECT statement with the WHERE clause

3-6 Learning Oracle 11g: A PL/SQL Approach

the number data type through an arithmetic operator. The arithmetic operators and their
usage are discussed in Table 3-1.

Operator Description

+, - These are unary operators that represent the positive and
negative expressions.

+ This is the addition operator. It is used to add two data items
or expressions. It is a binary operator.

- This is the subtraction operator. It is used to subtract two data
items or expressions. It is also a binary operator.

* This is the multiplication operator. It is used to multiply two
data items or expressions. It is also a binary operator.

/ This is the division operator. It is used to divide two data items
or expressions. It is also a binary operator.

Following are the examples of arithmetic operators.

The following query is used to add two values in Oracle:

SELECT 5 + 5 Total_Value FROM
DUAL;

TOTAL_VALUE

10

The result of the above query will be stored in the TOTAL_VALUE column of the numeric
data type.

The following query is used to divide a value with other value:

SELECT 8 / 2 Total_Value FROM
DUAL;

TOTAL_VALUE

4

The following query adds specified number of days to SYSDATE:

Table 3-1 The Arithmetic operators and their description

Retrieving Data in SQL 3-7

SELECT SYSDATE, (SYSDATE) + 10
result_date FROM dual;

SYSDATE RESULT_DATE
-------------- ----------------------
25-JUN-08 05-JUL-08

Comparison Operators
The Comparison operators are used to compare one expression with another expression.
These operators compare two values or expressions and return a boolean result TRUE, FALSE,
or NULL. The Comparison operators are = (Equal), < (Less than), > (Greater than), <=
(Less than or equal to), >= (Greater than or equal to), <> and != (Not equal to), and
value comparisons. These operators are discussed next.

= (Equal)
This operator is used in a conditional statement. If the values or the result of expression on
both sides of the operator are equal, the condition will be TRUE.

For example:

SELECT Ename, Sal, Deptno FROM Emp
WHERE Deptno = 30;

In the above example, the SQL query will return all those records of the Emp table in which
the department number is 30. The above query will return the following rows:

ENAME SAL DEPTNO
---------- ---------- ----------
BLAKE 2850 30
MARTIN 1250 30
ALLEN 1600 30
TURNER 1500 30
JAMES 950 30
WARD 1250 30

!=, <>, or ^= (Not Equal to)
These operators are used to check inequality. If the value or result of expression on both
sides of the operator is not equal, the condition will evaluate to TRUE.

For example:

SELECT Ename, Sal, Deptno FROM Emp
WHERE Deptno <> 30;

In the above example, the SQL query will return all those records of the Emp table, in which
the department number is not 30. The above query returns the following rows:

3-8 Learning Oracle 11g: A PL/SQL Approach

ENAME SAL DEPTNO
---------- ---------- ----------
KING 5000 10
CLARK 2450 10
JONES 2975 20
FORD 3000 20
SMITH 800 20
SCOTT 3000 20
ADAMS 1100 20
MILLER 1300 10

< (Less Than)
If the value or result of an expression on the left of the operator is less than the value or result
of an expression on the right side of the operator, the < (Less than) operator will evaluate to
TRUE.

For example:

SELECT Ename, Sal, Deptno FROM Emp
WHERE Sal < 2000;

In the above example, the SQL query will return all those records from the Emp table in
which the salary is less than 2000. The above query will return the following rows:

ENAME SAL DEPTNO
---------- ---------- ----------
MARTIN 1250 30
ALLEN 1600 30
TURNER 1500 30
JAMES 950 30
WARD 1250 30
SMITH 800 20
ADAMS 1100 20
MILLER 1300 10

> (Greater Than)
If the value or the result of an expression on the left of the operator is more than the value or
result of an expression on the right, the > (Greater than) operator will evaluate to TRUE.

For example:

SELECT Ename, Sal, Deptno FROM Emp
WHERE Sal > 2000;

In the above example, the SQL query will return all those records from the Emp table in
which the salary is greater than 2000. The above query will return the following rows:

Retrieving Data in SQL 3-9

ENAME SAL DEPTNO
---------- ---------- ----------
KING 5000 10
BLAKE 2850 30
CLARK 2450 10
JONES 2975 20
FORD 3000 20
SCOTT 3000 20

<= (Less Than or Equal to)
If the value or result of an expression on the left of this operator is either less than or equal
to the value or result of an expression on the right of the operator, the <= (Less then or
Equal to) operator will evaluate to TRUE.

For example:

SELECT Empno, Ename, Sal, Deptno FROM Emp
WHERE Sal <= 3000;

In the above example, the SQL query returns all those records of the Emp table in which the
salary is less than or equal to 3000. The above query will return the following rows:

 EMPNO ENAME SAL DEPTNO
----------- ---------- ---------- -------------
7698 BLAKE 2850 30
7782 CLARK 2450 10
7566 JONES 2975 20
7654 MARTIN 1250 30
7499 ALLEN 1600 30
7844 TURNER 1500 30
7900 JAMES 950 30
7521 WARD 1250 30
7902 FORD 3000 20
7369 SMITH 800 20
7788 SCOTT 3000 20
7876 ADAMS 1100 20
7934 MILLER 1300 10

>= (Greater Than or Equal To)
If the value or result of an expression on the left of this operator is either greater than or
equal to the value or expression on the right of this operator, the >= (Greater than or Equal
to) operator will evaluate to TRUE

For example:

SELECT Empno, Ename, Sal, Deptno FROM Emp
WHERE Sal >= 3000;

3-10 Learning Oracle 11g: A PL/SQL Approach

In the above example, the SQL query will return all those records of the Emp table in which
the salary is either equal to or more than 3000. The above query will return the following rows:

EMPNO ENAME SAL DEPTNO
----------- ---------- ---------- ----------
7839 KING 5000 10
7902 FORD 3000 20
7788 SCOTT 3000 20

ANY or SOME
The ANY or SOME operator is used to compare a value with each value in a list or the values
returned by a query. These operators must be preceded by a Comparison operator =, !=, >,
<, <=, or >=.

The following example will illustrate the use of ANY and SOME operators with the
comparison operator >(greater than):

SELECT Ename, Sal, Job, Hiredate
FROM Emp
WHERE Sal > SOME(1000, 2000, 3000);

Or

SELECT Ename, Sal, Job, Hiredate
FROM Emp
WHERE Sal > ANY(1000, 2000, 3000);

In this example, the SQL query will return all those records of the Emp table in which the
salary of employee is greater than the values in the list (1000, 2000, 3000). The above query
will return the following rows:

ENAME SAL JOB HIREDATE
---------- ---------- ------------- ------------------
KING 5000 PRESIDENT 17-NOV-81
BLAKE 2850 MANAGER 01-MAY-81
CLARK 2450 MANAGER 09-JUN-81
JONES 2975 MANAGER 02-APR-81
ALLEN 1600 SALESMAN 20-FEB-81
FORD 3000 ANALYST 03-DEC-81
SCOTT 3000 ANALYST 09-DEC-82

The following example will illustrate the use of the ANY and SOME operators with the
comparison operator =(Equal):

SELECT Ename, Sal, Job, Hiredate
FROM Emp
WHERE Sal = ANY(800, 3000, 5000);

Retrieving Data in SQL 3-11

Or

SELECT Ename, Sal, Job, Hiredate
FROM Emp
WHERE Sal = SOME(800, 3000, 5000);

In the above example, the SQL query will return all those records of the Emp table in which
the employee number is equal to the values in the list (800, 3000, 5000). The above query
returns the following rows:

ENAME SAL JOB HIREDATE
---------- ---------- --------- -----------------
KING 5000 PRESIDENT 17-NOV-81
FORD 3000 ANALYST 03-DEC-81
SMITH 800 CLERK 17-DEC-80
SCOTT 3000 ANALYST 09-DEC-82

Note
When the ANY operator is used with the comparison operator =(Equal), it works the same way
as the IN operator. The IN operator will be discussed later in this chapter.

ALL
The ALL operator is used to compare a value with every value in a list or the value returned
by a query. This operator must be preceded by the comparison operator =, !=, >, <, <=, or
>=.

The following example will illustrate the use of the ALL operator with the comparison
operator > (greater than):

SELECT Ename, Sal, Job, Hiredate
FROM Emp
WHERE Sal > ALL(500, 1000, 2000);

In this example, the SQL query will return all those records of the Emp table in which the
salary of employee is greater than the values in the list (500, 1000, 2000). The above query
will return the following rows:

ENAME SAL JOB HIREDATE
---------- ---------- --------- ---------
KING 5000 PRESIDENT 17-NOV-81
BLAKE 2850 MANAGER 01-MAY-81
CLARK 2450 MANAGER 09-JUN-81
JONES 2975 MANAGER 02-APR-81
FORD 3000 ANALYST 03-DEC-81
SCOTT 3000 ANALYST 09-DEC-82

3-12 Learning Oracle 11g: A PL/SQL Approach

The following example will illustrate the use of the ALL operator with the comparison
operator >= (greater than or equal to):

SELECT Ename, Sal, Job, Hiredate
FROM Emp
WHERE Sal >= ALL(800, 1000, 2000);

In the above example, the SQL query will return all those records of the Emp table in which
the salary of employee is greater than or equal to the values in the list (800, 900, 1000). The
above query will return the following rows:

ENAME SAL JOB HIREDATE
---------- ---------- --------- ---------
MARKING 5000 PRESIDENT 17-NOV-81
BLAKE 2850 MANAGER 01-MAY-81
CLARK 2450 MANAGER 09-JUN-81
JONES 2975 MANAGER 02-APR-81
MARTIN 1250 SALESMAN 28-SEP-81
ALLEN 1600 SALESMAN 20-FEB-81
TURNER 1500 SALESMAN 08-SEP-81
WARD 1250 SALESMAN 22-FEB-81
FORD 3000 ANALYST 03-DEC-81
SCOTT 3000 ANALYST 09-DEC-82
ADAMS 1100 CLERK 12-JAN-83
MILLER 1300 CLERK 23-JAN-82

Logical Operators
The logical operators are used to combine the results of two or more conditions to produce a
single result. The logical operators are discussed next.

NOT
The NOT operator is used to reverse the output of any other logical operator. This
operator will return TRUE, if the given condition is FALSE, and will return FALSE, if the
given condition is TRUE.

For example:

SELECT * FROM Emp
WHERE NOT (Job IS NULL);

The above query will return all those records of the Emp table in which the column Job is not
Null.

The following example will illustrate the use of the BETWEEN operator with the NOT
operator.

Retrieving Data in SQL 3-13

SELECT * FROM Emp
WHERE NOT (Sal BETWEEN 1000 AND 2000);

The above query will return all those records of the Emp table in which the salary is not
between 1000 and 2000.

AND
The AND operator joins two or more than two conditions. This operator will return TRUE,
if both conditions are TRUE, and will return FALSE, if one of the conditions is FALSE.
Otherwise, it will return an unknown value.

For example:

SELECT * FROM Emp
WHERE Job = ‘CLERK’ AND Sal > 900;

The above query will return all those records of the Emp table in which both the conditions,
Job = ‘CLERK’ and Sal > 900, return TRUE, as shown in Figure 3-5.

OR
The OR operator joins two or more than two conditions. This operator will return TRUE, if
one of the conditions evaluates to TRUE and return FALSE, if both the conditions evaluate to
FALSE. Otherwise, it will return an unknown value. The OR operator is evaluated after the
AND operator.

SELECT * FROM Emp
WHERE Job = ‘CLERK’ OR Sal > 2000;

This above query will return all those records from the Emp table in which one of the
conditions, Job = ‘CLERK’ or Sal > 2000, is TRUE, as shown in Figure 3-6.

Figure 3-5 Query showing the use of the AND operator

3-14 Learning Oracle 11g: A PL/SQL Approach

Other Operators
Oracle provides some other operators as well. These are discussed next.

LIKE Operator
You can use the LIKE operator in a character string. This operator compares the string with
the matching pattern. Sometimes, you may need to perform searches by matching part of a
character string. In such cases, you can use the LIKE operator. For example, you may need to
retrieve the name of the students, whose last name begins with the letter M, or find all
courses with the initial letters MIS. To do so, you can use the LIKE operator. The general
syntax for using the LIKE operator in the search condition is as follows:

SELECT Column1, Column2...............
FROM Table
WHERE Column_Name LIKE ‘Char_String’;

In the above syntax, Char_String is the pattern with which the Column_Name will be
compared. The pattern is a value having the data type CHAR or VARCHAR2 and contains
the special matching pattern characters: percent sign (%) and underscore (_).

The percent sign (%) denotes single number or multiple numbers of unknown characters,
and underscore sign (_) denotes only an unknown character.

For example:

SELECT Empno, Ename, Sal, Job, Hiredate
FROM Emp WHERE Ename LIKE ‘J%’;

The above query will return employee number and names whose name starts with letter J.
The output of the above query is shown in Figure 3-7.

Figure 3-6 Query showing the use of the OR operator

Retrieving Data in SQL 3-15

The following example will illustrate the use of the LIKE operator with the matching
pattern characters: percent sign (%) and underscore (_).

Write queries that will illustrate the use of the LIKE operator with the matching pattern
characters percent sign (%) and underscore (_).

The following steps are required to use the LIKE operator.

1. In SQL *Plus, enter the following SQL query to retrieve the rows in which the name of
employees begins with the letter A:

SELECT Ename, Sal, Job, Comm, Hiredate FROM Emp
WHERE Ename LIKE ‘A%’;

In the above example, the percent sign (%) used after the character A in the LIKE
operator represents any possible character or a set of characters that may appear after A.
Thus, the above query will return all those employee names that begin with the character A,
as shown in Figure 3-8.

Figure 3-7 Query showing the use of the (%) Like operator

Figure 3-8 Query showing the use of the (%) LIKE operator

Example 1

3-16 Learning Oracle 11g: A PL/SQL Approach

2. In SQL * Plus, enter the following SQL query to retrieve the rows in which the name of
employees contains the word ES:

SELECT Ename, Sal, Job, Comm, Hiredate
FROM Emp
WHERE Ename LIKE ‘%ES%’;

The above query will return name, salary, job, and commission of those employees whose
name contains the characters ES. Note that this character set may appear anywhere in
the name of the employees.

3. In SQL *Plus, enter the following SQL query to retrieve the rows in which the name of
employee is similar to JONES and so on. In these names, the first and the last two
characters will remain the same. This can be done by using the underscore (_) with the
LIKE operator.

SELECT * FROM Emp
WHERE Ename LIKE ‘J__ES’;

In the above example, the underscore sign (_) used twice between J and ES in the
LIKE operator represents any possible two characters that might appear between J and
ES. The output of the above query is shown in Figure 3-9.

BETWEEN and NOT BETWEEN Operators
The BETWEEN operator is used in the WHERE clause to select a range of data between two
values or expressions. The syntax for using the BETWEEN operator is as follows:

SELECT Column1, Column2...............
FROM Table
WHERE Column_Name BETWEEN Value1 AND Value2;

In the above syntax, BETWEEN is a keyword. Value1 and Value2 are the start and end
values respectively. Note that the start value Value1 should always be less than the end value
Value2.

Figure 3-9 Query showing the use of the (_) LIKE operator

Retrieving Data in SQL 3-17

The above SQL statement will return the records where Column_Name is within the range
of Value1 and Value2. The BETWEEN operator can be used in any valid SQL statement
such as SELECT, INSERT, UPDATE, or DELETE.

For example:

In SQL * Plus, enter the following SQL query to retrieve the rows from the Emp table having
employee number between 7521 and 7844:

SELECT * FROM Emp
WHERE Empno BETWEEN 7521 AND 7844;

The above query will return all details of employees having employee number between 7521
and 7844, as shown in Figure 3-10.

The following example will illustrate the use of the BETWEEN operator with the DATE data
type:

SELECT * FROM Emp
WHERE Hiredate BETWEEN TO_DATE(‘25/06/1981’, ‘dd/mm/yy’) AND
TO_DATE(‘25/06/2006’, ‘dd/mm/yy’);

The preceding query will return all details of employees having Hiredate between Jun 25,
1981 and Jun 25, 2006, as shown in Figure 3-11.

Figure 3-10 Query showing the use of the BETWEEN operator

3-18 Learning Oracle 11g: A PL/SQL Approach

The above SQL statement is equivalent to the following SQL statement:

SELECT * FROM Emp
WHERE Hiredate >= TO_DATE(‘25/06/1981’, ‘dd/mm/yy’)
AND Hiredate <= TO_DATE(‘25/06/2006’, ‘dd/mm/yy’);

NOT BETWEEN
You can combine the BETWEEN operator with the NOT operator. The NOT BETWEEN
operator is used to select a range of data that does not exists between the two given values
or expressions.

For example:

SELECT * FROM Emp
WHERE Empno NOT BETWEEN 7521 AND 7844;

The above query will return all details of those employees whose Empno is not between 7521
and 7844, as shown in Figure 3-12.

The above query can be also written as:

SELECT * FROM Emp
WHERE Empno < 7521 OR Empno > 7844;

Figure 3-11 Query showing the use of the BETWEEN operator with the DATE data type

Retrieving Data in SQL 3-19

IN and NOT IN Operators
The IN operator is used to compare a value with each value in a list or returned by a query.
The syntax for using the IN operator is as follows:

SELECT Column1, Column2...............
FROM Table
WHERE Column_Name IN (Value1, Value2, Value3,....... Value_n| Select_statement);

The above SQL statement will return all those records in which Column_Name is Value1,
Value2, Value3, Value_n. The values in the parenthesis can be one or more, with each
value separated by a comma. The values can be characters or numerical. The IN operator
can be used with any valid SQL statement: SELECT, INSERT, UPDATE, or DELETE.

For example:

In SQL *Plus, enter the following query to retrieve details of those employees whose
employee numbers are 7499, 7900, and 7902.

SELECT * FROM Emp
WHERE Empno IN(7499, 7900, 7902);

The list of values enclosed in the parenthesis is called an inlist. The above query has an inlist
with three values (7499, 7900, 7902). The above query will return the details of those employees
whose employee number is same as in the inlist, as shown in Figure 3-13.

The following example will illustrate the use of the IN operator with string values in the
inlist.

SELECT * FROM Emp
WHERE Job IN (‘CLERK’, ‘MANAGER’);

Figure 3-12 Query showing the use of the NOT BETWEEN operator

3-20 Learning Oracle 11g: A PL/SQL Approach

The above query will list the names of all employees having CLERK and MANAGER as their
Job, as shown in Figure 3-14. In each of these queries, the IN operator has been used to
select the data based on multiple constant values.

NOT IN
You can combine the IN operator with the NOT operator. The NOT IN operator works just
opposite to the IN operator. The syntax for using the NOT IN operator is as follows:

SELECT Column1, Column2...............
FROM Table
WHERE Column_Name NOT IN (Value1, Value2, Value3,.......);

For example:

SELECT Ename, Sal, Deptno FROM Emp
WHERE Empno NOT IN (7698, 7782, 7566, 7900, 7934, 7788);

Figure 3-13 Query showing the use of the IN operator

Figure 3-14 Query showing the use of the IN operator with string inlist

Retrieving Data in SQL 3-21

The above query will return the Ename, Sal, and Deptno from the Emp table of those
employees whose Employee number is not 7698, 7782, 7566, 7900, 7934, and 7788. The
output of the above query is as follows:

ENAME SAL DEPTNO
---------- ---------- ----------
KING 5000 10
MARTIN 1250 30
ALLEN 1600 30
TURNER 1500 30
WARD 1250 30
FORD 3000 20
SMITH 800 20
ADAMS 1100 20

EXISTS and NOT EXISTS Operators
The EXISTS operator is used to check the existence of those rows whose values match with
the subquery. The subquery can be a query on the same or different tables, or a combination
of both tables used in main query. When a subquery returns a single value, it means that the
operator has achieved the target. The syntax for using the EXISTS operator is as follows:

SELECT Column_Name
FROM Table1
WHERE EXISTS (SELECT Column_Name FROM Table2);

The EXISTS operator can be used with any valid SQL statement: SELECT, INSERT,
UPDATE, or DELETE. In most cases, this type of query is used with a standard join to
improve performance. The EXISTS operator typically provides better performance than the
IN operator.

Note
You will learn about subqueries later in this chapter.

For example:

SELECT Empno, Ename FROM Emp E
WHERE EXISTS (SELECT 1 FROM Dept D

WHERE E.Deptno = D.Deptno);

The output of the above query is as follows:

EMPNO ENAME
---------- ----------
7934 MILLER
7839 KING
7782 CLARK

3-22 Learning Oracle 11g: A PL/SQL Approach

7902 FORD
7876 ADAMS
7788 SCOTT
7566 JONES
7369 SMITH
7900 JAMES
7844 TURNER
7698 BLAKE
7654 MARTIN
7521 WARD
7499 ALLEN

The following example will illustrate the use of the EXISTS operator with the DELETE
statement:

DELETE FROM Emp
WHERE EXISTS (SELECT * FROM Dept

 Where Emp.Deptno = Dept.Deptno);

The above query will delete all those records from the Emp table, in which the value of
Deptno of the Emp table is same as the value of Deptno of the Dept table.

The following example will illustrate the use of the EXISTS operator with the UPDATE
statement:

UPDATE Emp
SET Deptno= (SELECT Dept.Deptno FROM Dept

 WHERE Dept.Dname = ‘RESEARCH’)
WHERE EXISTS (SELECT Dept.Deptno FROM Dept

 WHERE Dept.Dname = ‘RESEARCH’);

NOT EXISTS
You can also combine the EXISTS operator with the NOT statement. The NOT EXISTS
operator works just opposite to the EXISTS operator. The syntax for using the NOT EXISTS
operator is as follows:

SELECT Column_Name
FROM Table1
WHERE NOT EXISTS (SELECT Column_Name FROM Table2);

For example:

SELECT Deptno, Dname FROM Dept D
WHERE NOT EXISTS (SELECT 1 FROM Emp E

WHERE D.Deptno = E.Deptno)

Retrieving Data in SQL 3-23

The above query will return the number and name of the departments from the Dept table,
in which there are no records of Deptno in the Emp table. The output of the above query is
as follows:

DEPTNO DNAME
--------------- --------------------
40 OPERATIONS

Set Operators
Sometimes, you may need to combine the results of two or more SELECT statements. Oracle
database provides the set operators to meet this requirement.

The set operators are used to combine the data of similar type from more than one query.
Oracle SQL supports the following four set operators:

1. UNION ALL
2. UNION
3. MINUS
4. INTERSECT

The SQL statements containing these operators are referred as compound queries and each
SELECT statement in a compound query is referred to as a composite query. You can com-
bine two SELECT statements into a compound query by a set operator. This is possible only
when the SELECT statement satisfies the following two conditions:

1. The result sets of both the queries must have same number of columns.

2. The data type of each column in the second result set must match the data type of its
corresponding column in the first result set.

These conditions are also referred to as union compatibility conditions. The term union
compatibility is used here even though these conditions apply to other set operations as well.
The set operations are often called as vertical joins because the result is formed by combining
the data from two or more SELECT statements based on columns, instead of rows. The
syntax of a query involving a set operator is as follows:

<component query>
{UNION | UNION ALL | MINUS | INTERSECT}
<component query>

The keywords UNION, UNION ALL, MINUS, and INTERSECT are set operators. You can
have more than two component queries in a composite query, but the set operators used in
the composite query will always be one less than the number of components used.

The following sections discuss syntax, examples, rules, and restrictions for the four set
operators.

3-24 Learning Oracle 11g: A PL/SQL Approach

UNION ALL Operator
This operator combines the results of two or more queries into a single result set. This
operation returns the rows that are retrieved by either of the queries. The UNION ALL
operator allows the duplicate rows in the result set.

The UNION ALL operator is used when you want duplicate rows to occur in the result set.
The syntax for using UNION ALL is as follows:

SELECT statement
UNION ALL
SELECT statement;

In the above syntax, the UNION ALL operator will join the result set of the two SELECT
statements.

For example:

SELECT Ename FROM Emp
UNION ALL
SELECT Dname FROM Dept;

The above example generates a list of names of employee and department from the Emp
and Dept tables.

The following example will illustrate the use of the UNION ALL operator with the ORDER
BY clause:

SELECT Empno, Ename FROM Emp
WHERE Empno > 7300
UNION ALL
SELECT Deptno, Dname FROM Dept
WHERE Deptno > 20
ORDER BY 2;

Since the column names are different in the two SELECT statements, it is more appropriate to
reference the columns in the ORDER BY clause by their position in the result set. In the
above query, the result has been sorted by Ename / Dname in ascending order, as denoted by
the ‘ORDER BY 2’.

Here Ename / Dname fields are in position 2 in the result set.

UNION Operator
This operator combines the results of two or more queries into a single result set. The single
result set consists of distinct rows returned by all queries. The UNION operator returns the
distinct rows retrieved by either of the queries.

Retrieving Data in SQL 3-25

Unlike the UNION ALL operator, the UNION operator eliminates duplicate rows from the
result set. The syntax for using the UNION operator is as follows:

SELECT statement
UNION
SELECT statement;

In the above syntax, the UNION operator joins the result sets of two SELECT statements
and eliminates duplicate rows.

For example:

SELECT Dname FROM Dept
UNION
SELECT Ename FROM Emp;

The above example will generate a list of distinct names of departments from the Dept table
and distinct names of employees from the Emp table. The UNION operator returns only the
distinct rows from either of the queries.

The following example will illustrate the use of the UNION operator with the ORDER BY
clause:

SELECT Empno, Ename FROM Emp
WHERE Empno > 7300
UNION
SELECT Deptno, Dname FROM Dept
WHERE Deptno > 20
ORDER BY 2;

MINUS Operator
The MINUS operator is used to return the difference between two sets. This operator returns
only those rows that exist in the first query but not in the second query. The syntax for using
the MINUS operator is as follows:

SELECT statement
MINUS
SELECT statement;

In the above syntax, the MINUS operator joins the result set of the two SELECT
statements and returns only the rows that are not in the second SELECT statement.

For example:

SELECT Deptno FROM Dept
MINUS
SELECT Deptno FROM Emp;

3-26 Learning Oracle 11g: A PL/SQL Approach

The above example will generate a list of department numbers from the Dept table which are
not in the Emp table.

The following example will illustrate the use of the MINUS operator with the ORDER BY
clause:

SELECT Deptno FROM Dept
MINUS
SELECT Deptno FROM Emp
ORDER BY 1;

INTERSECT Operator
The INTERSECT operator is used to return all distinct rows returned by the different SELECT
queries. The syntax for using the INTERSECT operator is as follows:

SELECT statement
INTERSECT
SELECT statement;

In the above syntax, the INTERSECT operator joins the result set of the two SELECT
statements and then returns the distinct result set retrieved by both SELECT statements.

For example:

SELECT Deptno FROM Dept
INTERSECT
SELECT Deptno FROM Emp;

The above example will generate a list of distinct department numbers from the Dept and
Emp tables. The INTERSECT operator returns only the distinct rows from either of the
queries.

The following example will illustrate the use of the INTERSECT operator with the ORDER
BY clause:

SELECT Deptno FROM Dept
INTERSECT
SELECT Deptno FROM Emp
ORDER BY 1;

Rules and Restrictions on Set Operations
The following list summarizes some simple rules, restrictions, and notes on Set operations:

1. Set operators are not applied on the columns of the data type BLOB, CLOB, BFILE,
and VARRAY. However, they can be applied on the nested table columns.

2. The UNION, INTERSECT, and MINUS operators are not valid on the columns having
the data type LONG.

Retrieving Data in SQL 3-27

3. Set operators are not used with those SELECT statements that contain the expression of
the TABLE collection.

4. The FOR UPDATE clause cannot be used with the set operators.

5. The number and size of the columns in the SELECT list of the component queries are
limited by the block size of the database. The total bytes of the selected columns cannot
exceed one database block.

Operator Precedence
Operator precedence refers to the order in which Oracle evaluates different operators within
the same expression. If an expression containing multiple operators, Oracle will evaluate the
higher precedence operators first before evaluating the lower precedence operators. In case
of operators having equal precedence, Oracle evaluates them from left to right within an
expression.

Table 3-2 lists the levels of operator precedence from high to low. Operators listed on the
same line have the same precedence.

Operator Operation

+, - identity, negation (Unary operator)

*, / multiplication, division

+, -, || addition, subtraction, concatenation

=, !=, <, >, <=, >=,
LIKE, BETWEEN, IN comparison

NOT negation

AND logical AND operation

OR logical OR operation

For example:

Consider the following expression:

1+2*3

In the above expression, Oracle will first multiply 2 by 3 and then add the result to 1 because
multiplication has higher precedence than addition.

Table 3-2 The SQL operator precedence

3-28 Learning Oracle 11g: A PL/SQL Approach

You can use the parentheses in the above expression to override operator precedence, as
given below:

(1+2)*3

In this expression, Oracle will evaluate the expression inside the parentheses first, then evaluate
the expressions outside the parentheses.

ORDER BY Clause
The ORDER BY clause allows you to arrange the data retrieved from a table in a sorted
order. The rows retrieved are sorted either in the ascending or in the descending order.

The syntax for using the ORDER BY clause is as follows:

SELECT Column_name FROM Table_name
WHERE Condition
ORDER BY columns ASC/DESC;

In the above syntax, ORDER BY is the keyword and Column_name is the name of column of
the table Table_name. The result will be sorted depending upon the column or columns
specified in the ORDER BY clause. The keyword ASC indicates that the result set will be
sorted in the ascending order and DESC indicates that the result set will be sorted in the
descending order. If the ASC or DESC value is omitted, Oracle will assume the ascending
order as the default value.

For example:

SELECT Ename
FROM Emp
WHERE Job =‘MANAGER’
ORDER BY Ename;

In the above example, the query will return the names of
the employees whose Job is MANAGER. As discussed earlier,
if you omit the keyword ASC/DESC, Oracle will take the
default value as ASC and, therefore, the records will be
sorted by the field Ename in the ascending order, as shown
in Figure 3-15.

SELECT Ename FROM Emp
WHERE Job =‘MANAGER’
ORDER BY Ename DESC;

The above query will return the names of employees, whose Job is MANAGER. Here, the
records will be sorted by the field Ename in the descending order, as shown in Figure 3-16.

Figure 3-15 Sorting records by
Ename

Retrieving Data in SQL 3-29

You can also sort records by position of the fields in the result set, where the first field is on
position 1 and the next field is on position 2, and so on.

For example, the query

SELECT Ename, Sal
FROM Emp
WHERE Job =‘MANAGER’
ORDER BY 1 DESC;

and

SELECT Ename, Sal
FROM Emp
WHERE Job =’MANAGER’
ORDER BY 2 DESC;

sort the records by the position fields.

The above queries will return all records sorted by
the position of the field in the descending order.

The first query will sort the records based on the
Ename field because Ename is on position 1 in the
query. In the second query, the records will be sorted
by the field Sal because Sal is on position 2 in the
query. The output of the above queries is shown in Figure 3-17.

The following queries will sort the records by specifying two fields in the ORDER BY clause:

SELECT Ename, Sal
FROM Emp
WHERE Job= ‘MANAGER’
ORDER BY Ename DESC, Sal ASC;

Figure 3-17 Sorting records by the
position field

Figure 3-16 Sorting records by Ename (DESC)

3-30 Learning Oracle 11g: A PL/SQL Approach

The result set of the above query will be sorted twice, first by the Ename field and second by
the Sal field, as shown in Figure 3-18.

GROUP BY Clause
The GROUP BY clause is used in the SELECT statement to collect data from multiple
records and group the results that have matching values for one or more columns. The syntax
for using the GROUP BY clause is as follows:

SELECT Column1, Column2, ..., Column-n
FROM Table_name
WHERE Condition
GROUP BY Column1, Column2, ..., Column-n;

In the above syntax, the GROUP BY is a keyword and Column1, Column2, and Column-n
are the names of columns of the table Table_name. You can group the result set by one or
more columns.

You can also use the aggregate function in the SELECT statement with the GROUP BY
clause. The syntax for using the GROUP BY clause while using the aggregate function in
the SELECT statement is as follows:

SELECT Column1, Column2, ..., Column-n, aggregate_Function(Expression)
FROM Table_name
WHERE Condition
GROUP BY Column1, Column2, ..., Column-n;

In the above syntax, the aggregate_Function can be any aggregate function such as SUM,
COUNT, MIN, or MAX. These aggregate functions will be discussed in the later chapter.

Figure 3-18 Sorting the records by two fields

Retrieving Data in SQL 3-31

Given below are some examples showing the use of the
GROUP BY clause with different aggregate functions.

The following example will illustrate the use of the
GROUP BY clause with the SUM function:

SELECT Job, SUM(Sal)
FROM Emp
GROUP BY Job;

In the above example, the SQL query will return the
job description of employees along with the total salary
(for example, total salary of the employees having job
description CLERK), as shown in Figure 3-19.

The following example will illustrate the use of the
GROUP BY clause with the COUNT function.

SELECT Job, COUNT(*)
FROM Emp
GROUP BY Job;

The above SQL query will return the job description of
employees with the total number of employees
in each job description. Figure 3-20 shows the output of
this query.

The following example will illustrate the use of the
GROUP BY clause with the MIN function:

SELECT Job, MIN(Sal)
FROM Emp
GROUP BY Job;

In the above example, the SQL query will return the job description of employees with
the minimum salary in each job description from the Emp table.

The following example will illustrate the use of the GROUP BY clause with the MAX function:

SELECT Job, MAX(Sal)
FROM Emp
GROUP BY Job;

In the above example, the SQL query will return the job description of the employees with
the maximum salary in each job description from the Emp table.

Figure 3-19 The GROUP BY clause
with the SUM function

Figure 3-20 The GROUP BY clause
with the COUNT function

3-32 Learning Oracle 11g: A PL/SQL Approach

HAVING Clause
The HAVING clause is used in the SELECT statement to filter the data returned by the
GROUP BY clause. The HAVING clause is similar to the WHERE clause and it is evaluated
once Oracle has evaluated the grouped values. The syntax for using the HAVING clause is as
follows:

SELECT Column1, Column2,, Column-n
FROM Tables
WHERE Condition
GROUP BY Column1, Column2,, Column_n
HAVING SearchCondition;

In the above syntax, the SearchCondition is a boolean expression, and it can contain only
grouping columns that means the columns that are part of the aggregate expression and the
columns that are part of a subquery. Consider the following query:

SELECT Job, Sal FROM Emp
GROUP BY Job
HAVING Empno >= 7521;

The above query is not valid because
Empno is not a grouping column, it is not
a part of the aggregate expression, and it
does not appear in the subquery.
Therefore, this query will return an error
with the message not a GROUP BY
expression, as shown in Figure 3-21.

You can also use the aggregate function in
the SELECT statement with the HAVING
clause. The syntax for using the HAVING
clause with an aggregate function in the
SELECT statement is as follows:

SELECT column_name, aggregate_function(expression/column_name)
FROM Table_name
WHERE SearchCondition
GROUP BY column_name
HAVING SearchCondition;

In the above syntax, the aggregate_function can be any aggregate function such as SUM,
COUNT, MIN, MAX, and so on.

Some examples showing use of the HAVING clause with the different aggregate functions
are as follows:

The following example will illustrate the use of the HAVING clause with the AVG function:

Figure 3-21 Invalid use of the HAVING clause

Retrieving Data in SQL 3-33

SELECT Job, AVG(Sal)
FROM Emp
GROUP BY Job
HAVING AVG(Sal)>2000;

In the above SQL query, the AVG function will return the
average salary of the employees. The HAVING clause
will filter the results returned by the GROUP BY clause.
As a result, this query will return those job descriptions
salary whose average salary is greater than 2000, as shown
in Figure 3-22.

The following example will illustrate the use of the
HAVING clause with the MAX function:

SELECT Deptno, MAX(Sal)
FROM Emp
GROUP BY Deptno
HAVING MAX(Sal) > 4000;

In the above SQL query, the MAX function will return
the maximum salary of the employees. The HAVING
clause will filter the results returned by the GROUP BY
clause. As a result, this query will return those
department numbers in which maximum salary of an
employee is greater than 4000, as shown in Figure 3-23.

The following example will illustrate the use of the
HAVING clause with the MIN function:

SELECT Deptno, MIN(Sal)
FROM Emp
GROUP BY Deptno
HAVING MIN(Sal) > 1000;

In the above SQL query, the MIN function will return the minimum salary of the employees.
The HAVING clause will filter the results returned by the GROUP BY clause. As a result, this
query will return those department numbers in which minimum salary of an employee is
greater than 1000.

The following example will illustrate the use of the HAVING clause with the SUM function:

SELECT Deptno, SUM(Sal) FROM Emp
GROUP BY Deptno
HAVING SUM(Sal) > 5000;

Figure 3-22 Using the AVG
function

Figure 3-23 Using the HAVING
clause with the MAX function

3-34 Learning Oracle 11g: A PL/SQL Approach

In the above query, the SUM function will return the total salary of each department. The
HAVING clause will filter the result set and return the department numbers having total
salary greater than 5000.

IS NULL and IS NOT NULL Operators
The IS NULL and IS NOT NULL operators are used to find the NULL and not NULL
values respectively. The IS NULL operator returns TRUE, when the value is NULL; and
FALSE, when the value is not NULL. The IS NOT NULL operator returns TRUE, when the
value is not NULL; and FALSE, when the value is NULL.

The following example will illustrate the use of the IS NULL operator:

SELECT * FROM Emp
WHERE Comm IS NULL;

The above SQL query will return all records from the Emp table where Comm contains a
NULL value.

The following example will illustrate the use of the IS NOT NULL operator:

SELECT * FROM Emp
WHERE Comm IS NOT NULL;

The above SQL query will return all records from the Emp table where Comm does not
contain a NULL value.

SELECTING DATA FROM THE DUAL TABLE
The Dual table is the default table in the Oracle database. It is created by Oracle along with
the data dictionary. It is a special one-row and one-column table. The Dual table has exactly
one column called DUMMY of VARCHAR2(1) data type which has a single row with a value
of X (here, X can be any value), as shown in Figure 3-24. The owner of the dual table is SYS
but it can be accessed by every user in the Oracle database.

Figure 3-24 The DUAL table

Retrieving Data in SQL 3-35

The following example will illustrate the use of the DUAL table to find the system date and
the current user:

SELECT SYSDATE
FROM DUAL;

SELECT USER
FROM DUAL;

In the above example, the SELECT statement query will return the system date and the
second SELECT statement will return the name of current user, as shown in Figure 3-25. The
SYSDATE function is used to return the system date and is discussed in the later chapters.

SUBQUERIES
Query within a query is called a subquery. The statement containing a subquery is called the
parent statement. Subqueries are used to retrieve data from tables and the retrieved data
depends on the value in the table itself. The output of a subquery is the input to the main
query and on the basis of output of the subquery, the result set of whole query is generated.

The syntax for using a subquery is as follows:

SELECT Column1, Column2,...........
FROM Table_name
WHERE Column_X operator (SELECT Column_Names

FROM Table_name
WHERE Search_Condition);

In the above syntax, the SELECT statement appearing within parenthesis is a subquery, and
the rest of the query is the main query. The output of the subquery is the input to the main
query. The WHERE clause that appears in the subquery is optional. Here, subquery can
return single or multiple values. Subqueries can be used in the INSERT, UPDATE and
DELETE statements.

Figure 3-25 Selecting SYSDATE and USER from the DUAL table

3-36 Learning Oracle 11g: A PL/SQL Approach

For example:

SELECT Empno, Ename, Sal, Deptno FROM Emp
WHERE Sal > (SELECT Sal FROM Emp

WHERE Ename = ‘JONES’);

In the above query, the inner query will return the salary of the employee named JONES.
This salary will be compared with the outer query and then only those rows will be returned
that meet the condition in the WHERE clause. The output of the above query is as follows:

EMPNO ENAME SAL DEPTNO
------------ ------------ ---------- --------------
7839 KING 5000 10
7902 FORD 3000 20
7788 SCOTT 3000 20

Subqueries can be of three types: single-row, multiple-row, and multiple-column subqueries.
These types of subqueries are discussed next.

Single-Row Subqueries
Single-row subqueries return only one row as a result. The operators that can be used with
single-row subqueries are =, >, >=, <, <=, and <>.

Given below is a list of examples that illustrates the use of single-row subqueries in different
conditions.

In order to list the employees who earn less than the average salary in any organization, the
group function AVG must be used to calculate the average salary of employees. However, the
group function cannot be used with the WHERE clause. In such a case, you can use a subquery.

SELECT Empno, Ename, Sal, Hiredate FROM Emp
WHERE Sal > (SELECT AVG(Sal) FROM Emp);

In the above example, the main query will return the details of all those employees whose
salary is greater than the average salary. If subquery returns more than one value, the IN
operator must be used. The output of the above query is as follows:

EMPNO ENAME SAL HIREDATE
---------- ---------- ---------- ----------------
7839 KING 5000 17-NOV-81
7698 BLAKE 2850 01-MAY-81
7782 CLARK 2450 09-JUN-81
7566 JONES 2975 02-APR-81
7902 FORD 3000 03-DEC-81
7788 SCOTT 3000 09-DEC-82

Retrieving Data in SQL 3-37

The following example will illustrate the use of the AVG function with a subquery:

SELECT Emp.*, Dept.Dname FROM Emp, Dept
WHERE Emp.Deptno = Dept.Deptno AND
Emp.Sal > (SELECT AVG(Sal) FROM Emp);

In the above example, the main query will return all fields from the Emp table and only one
field called Dname from the Dept table. The query will return only those records in which
the salary of an employee is greater than the average salary of employees and has matching
values for the column Deptno in both Emp and Dept tables.

The following query will illustrate the use of the join operation in a subquery:

SELECT Emp.Ename, Dept.Dname FROM Emp INNER JOIN Dept
ON Emp.Deptno = Dept.Deptno
WHERE Emp.Sal > (SELECT AVG(Sal) FROM Emp);

In the above example, the main query will return the names of employees from the Emp
table as well as department names of employees from the Dept table.

Multiple-Row Subqueries
The subquery that returns multiple rows is called a multiple-row subquery. You need to use
the comparison operators IN, ALL, and ANY to handle the multiple rows returned by the
subquery.

The following example will illustrate the use of the IN operator with a subquery:

SELECT * FROM Emp
WHERE Empno IN (SELECT Empno FROM Emp

 WHERE Comm >= 150);

In the above example, the main query will return more than one record because the inner
query will return more than one value. Also, the subquery will return those employee num-
bers from the Emp table whose Comm is greater than or equal to 150.

Multiple-Column Subqueries
A multiple-column subquery returns more than one column. In a multiple-column subquery,
the resulting rows of the subquery are evaluated pair-wise (that is column to column and row
to row comparisons) in the main query.

For example:

SELECT Empno, Ename, Deptno FROM Emp
WHERE (Empno, Deptno) IN(SELECT e.Empno, D.Deptno

 FROM Emp E, Dept D);

3-38 Learning Oracle 11g: A PL/SQL Approach

In the above query, the inner query returns two columns, Empno and Deptno. Here, the
comparison is column to column that means the column values are compared as a pair and
not individually. The output of the above query is as follows:

EMPNO ENAME DEPTNO
----------- ----------- --------------
7839 KING 10
7698 BLAKE 30
7782 CLARK 10
7566 JONES 20
7654 MARTIN 30
7499 ALLEN 30
...........................
...........................

Using a Subquery with the CREATE and INSERT Statements
Subqueries can also be used with the CREATE and INSERT Statement.

For example:

CREATE TABLE Emp_Dup AS SELECT * FROM Emp;

The above query will create the table Emp_Dup from the existing table Emp and copy all
records from the Emp table.

Moreover, you can create a table without copying the rows from an existing table. For example:

CREATE TABLE Emp_Dup AS SELECT * FROM Emp WHERE 1>2;

Now, insert the records into the Emp_Dup table using the INSERT statement:

INSERT INTO Emp_Dup(Empno, Sal, Deptno)
(SELECT Empno, Sal, Deptno FROM Emp
WHERE Deptno = 10);

The above query will insert values into three columns of the Emp_Dup table from the
Emp table where Deptno is 10.

Using a Subquery to Delete and Update Data
Subqueries are not only used to retrieve or insert data into tables but also to delete or update
the data in the tables.

For example:

DELETE FROM Emp WHERE Empno IN
(SELECT Empno FROM Emp WHERE Comm <150);

Retrieving Data in SQL 3-39

In the above example, the inner query will return only those employee numbers whose
commission is less than 150. The DELETE statement will delete only those records from the
Emp table where Empno exists in the employee numbers returned by the inner query.

The following example will illustrate the use of a subquery to update the existing records:

UPDATE Emp_Dup SET (Sal, Comm)=(SELECT AVG(Sal), SUM(Comm)
FROM Emp) WHERE Empno= 7934;

In the above example, the query updates the salary and commission of an employee whose
employee number is 7934 in the Emp_Dup table.

CORRELATED SUBQUERIES
A correlated subquery is the SELECT statement that is nested inside another query
containing the reference of one or more columns in the outer query.

For example:

SELECT Empno, MGR, Ename, Sal,
FROM Emp OuterE
WHERE Sal > (SELECT AVG(Sal) FROM Emp InnerE

WHERE InnerE.Empno = Empno);

In the above correlated subquery, you can see that inner query contains a reference to
InnerE.Empno. This reference compares the outer query’s Empno with the inner query's
Empno. When the above query is executed, the Oracle will execute the inner query for each
employee record. The inner query will calculate the average salary of the particular
employee for the row being processed in the outer query. This correlated subquery determines,
if the inner query returns a value that meets the condition of the WHERE clause. The output
of the above query is as follows:

 EMPNO MGR ENAME SAL
------------- ---------- ------------- ----------
7839 KING 5000
7698 7839 BLAKE 2850
7782 7839 CLARK 2450
7566 7839 JONES 2975
7902 7566 FORD 3000
7788 7566 SCOTT 3000

JOIN
Sometimes you may need to retrieve records from more than one table. To do so, the Oracle
database provides a technique called Join. Joins are used to combine the result set of one or
more tables. A join operation can be performed whenever two or more tables are listed in the
FROM clause of an SQL statement. In order to query data from more than one table, you

3-40 Learning Oracle 11g: A PL/SQL Approach

need to identify common columns that relate the tables. If any two of these tables have a
common column name, then you must qualify all references to these columns throughout the
query with table names to avoid ambiguity.

Join means accessing rows from one or more tables. A join operation is essential while retrieving
data from one or more tables. The general syntax of a SELECT query that joins two tables is
as follows:

SELECT Column1, Column2,...............
FROM Table1, Table2
WHERE Table1.Join_Column = Table2.Join_Column;

In the above syntax, the SELECT clause lists the columns that you want to retrieve and the
FROM clause lists all table names that are involved in the join operation. On the basis of the
join condition (Table1.Join_Column = Table2.Join_Column), the rows from the tables Table1
and Table2 will be retrieved. This means that only those rows will be retrieved from the
tables that meet the join condition. If you want to retrieve a column that exists in more than
one table, you need to qualify the column name in the SELECT clause, so that Oracle returns
the specific column. To qualify a column in the SELECT clause, you have to specify the table
name containing the column, followed by a period (.) and column name. Joins are of various
types and these are discussed next.

INNER JOIN
INNER JOIN joins two or more tables and returns only those rows from the tables that
follow the join condition. The syntax for using the INNER JOIN is as follows:

SELECT Column1, Column2,...
FROM Table1, Table2,...
WHERE Table1.Column1=Table2.Column1...

In the above syntax, the join condition (Table1.Column1=Table2.Column1) appears in the
WHERE clause.

For example:

SELECT Empno, Ename, Dname
FROM Emp, Dept
WHERE Emp.Deptno = Dept.Deptno;

The above SQL query will return the number, name and department name of employees. It
will return only those rows where the department number of the table Emp matches with
department number of the table Dept.

Note
You can add more than one condition in the WHERE clause.

Retrieving Data in SQL 3-41

The syntax for using the ISO/ANSI INNER JOIN is as follows:

SELECT Column1, Column2,...
FROM Table1 [INNER JOIN][JOIN] Table2
[ON][USING] Table1.Column1=Table2.Column1

In the above syntax, the SELECT clause lists columns and the FROM clause lists the tables
involved in the join operation.

JOIN and INNER JOIN
These keywords indicate that the join operation is being performed. This clause is used to
replace the comma-delimited used between tables in the FROM clause.

ON condition
The ON clause is used to specify a join condition. This clause is used to replace the join
condition in the WHERE clause.

For example:

SELECT Empno, Ename, Dname
FROM Emp INNER JOIN Dept
ON Emp.Deptno=Dept.Deptno;

The above SQL query will return only those rows, where the department number in the Emp
table matches with the department number in the Dept table.

USING (column)
This clause is also used to replace the join condition in the WHERE clause. This clause is
used when several columns share the same name in tables that appear in the FROM clause.
It is recommended not to qualify the column name with a table name or table alias within this
clause.

For example:

SELECT Ename, Sal, Dname
FROM Emp INNER JOIN Dept
USING(Deptno);

The above SQL query will return only those rows from the tables Emp and Dept, where the
department numbers match.

The following example will the illustrate use of INNER JOIN with the WHERE clause:

SELECT Empno, Ename, Dname
FROM Emp INNER JOIN Dept
ON Emp.Deptno=Dept.Deptno
WHERE Emp.Job IN(‘MANAGER’, ‘SALESMAN’, ‘ANALYST’);

3-42 Learning Oracle 11g: A PL/SQL Approach

The above SQL query will return only those rows where the department number of the
Emp table matches with the department number of the Dept table provided the employee’s
job is MANAGER, SALESMAN, or ANALYST. You can also use the WHERE clause in the
ISO/ANSII INNER JOIN semantics for further filtering of records.

OUTER JOIN
The OUTER JOIN returns all rows of a table with only those rows from another table that
follow the join condition. It also returns a null value in place of the records which do not
follow the join condition from the another table. There are three types of outer joins: LEFT
OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN. These types are discussed
next.

LEFT OUTER JOIN
The LEFT OUTER JOIN returns all rows of the first table (the table that appears first in the
table list of the FROM clause) and only those rows from the second table that follow the
join condition. It also returns replacement of the non-matching (that does not follow the join
condition) rows from the second table with a NULL value. The syntax for using the LEFT
OUTER JOIN is as follows:

SELECT Column1, Column2,...
FROM Table1 LEFT OUTER JOIN Table2
ON Table1.Join_Column=Table2.Join_Column

In the above syntax, the SELECT clause lists the columns to be displayed and the FROM
clause lists the tables involved in the join operation with the table aliases. The LEFT OUTER
JOIN is a keyword that indicates that the left outer join operation is being performed.
This syntax is used to replace the comma-delimiter used between tables in the FROM clause.
The ON clause in the syntax is used to specify a join condition. This syntax is used to replace
the join condition in the WHERE clause.

For example:

SELECT Emp.Ename, Dept.Dname
FROM Emp LEFT OUTER JOIN Dept
ON Emp.Deptno=Dept.Deptno ;

The above SQL query will return all rows from the Dept table and only those rows from the
Emp table that meet the join condition. Also, it will return the NULL value for those rows
that do not follow the join condition.

RIGHT OUTER JOIN
The RIGHT OUTER JOIN returns all rows of the second table (that appears second in the
table list of the FROM clause) and only those rows from the first table that follow the join
condition. It also returns the replacement of the non-matching rows (rows that do not follow

Retrieving Data in SQL 3-43

the join condition) from the first table with a NULL value. The syntax for using the RIGHT
OUTER JOIN is as follows:

SELECT Column1, Column2,...
FROM Table1 RIGHT OUTER JOIN Table2
ON Table1.Join_Column=Table2.Join_Column

In the above syntax, the SELECT clause lists the columns to be displayed and the FROM
clause lists the tables involved in the join operation.

The RIGHT OUTER JOIN is a keyword and indicates that the join operation is being
performed. This syntax is used to replace the comma-delimited table expressions used in the
FROM and WHERE clauses.

The ON clause specifies a join condition. This syntax is used to replace the join condition in
the WHERE clause.

For example:

SELECT Ename, Dname
FROM Emp RIGHT OUTER JOIN Dept
ON Emp.Deptno=Dept.Deptno;

The above SQL query will return all rows from the Emp table and only those rows from the
Dept table that meet the join condition. Also, it will return the NULL value for those rows
that do not follow the join condition.

FULL OUTER JOIN
The FULL OUTER JOIN returns all those rows from both the tables, where the rows from
one table match with the rows from the other table. The syntax for using the FULL OUTER
JOIN is as follows:

SELECT Column1, Column2,...
FROM Table1 FULL OUTER JOIN Table2
ON Table1.Join_Column=Table2.Join_Column

In the above syntax, the SELECT clause lists the columns to be displayed and the FROM
clause lists the tables involved in the join operation.

For example:

SELECT Emp.Ename, Emp.Sal, Dept.Dname
FROM Emp FULL OUTER JOIN Dept
ON Emp.Deptno=Dept.Deptno ;

The above query will display two columns Ename and Sal from the table Emp, and Dname
from the table Dept. It will return only those rows in which the values of the column Deptno

3-44 Learning Oracle 11g: A PL/SQL Approach

of the Emp table matches with the values of the column Deptno of the Dept table. It will also
return Null values from both the tables those does not match the join condition.

Self Join
The self join joins a table to itself. It means that a self join joins one row of a table with
another row in the same table. It compares one row of a table to itself or with the other rows
in the same table. This table appears twice or more times in the FROM clause and is followed
by table aliases that qualify column names in the join condition and the SELECT clause. The
syntax for using the self join is as follows:

SELECT Column1, Column2,...
FROM Table1 Table_alias1, Table1 Table_alias2, ...
WHERE Table_alias1.Column1=Table_alias2.Column1...

In the above syntax, the join condition appears in the WHERE clause. The Table_alias1 and
Table_alias2 refer to the name of Table1. Also, Table_alias1.Column1 and
Table_alias2.Column1 refer to Column1 from Table1.

Note
For joining a table with itself, you must use an alias for each of the tables in the FROM clause
as well as in the SELECT list and the WHERE clause.

For example:

SELECT m.Ename || ‘ Is manager of ’ || e.Ename FROM Emp m, Emp e
WHERE m.MGR = e.Empno;

The above query will return both employee number and employee name from the Emp
table, as here the selfjoin retrieves rows from the same table. The output of the above query
is as follows:

M.ENAME||'ISMANAGEROF'||E.ENAME
--
SMITH Is manager of SMITH
ALLEN Is manager of ALLEN
WARD Is manager of WARD
JONES Is manager of JONES
MARTIN Is manager of MARTIN
BLAKE Is manager of BLAKE
CLARK Is manager of CLARK
SCOTT Is manager of SCOTT
KING Is manager of KING
TURNER Is manager of TURNER
ADAMS Is manager of ADAMS
JAMES Is manager of JAMES
FORD Is manager of FORD
MILLER Is manager of MILLER

Retrieving Data in SQL 3-45

Equijoin
An equijoin contains equality operator (=) in the join condition which is used to match rows
from different tables.

For example:

SELECT e.Empno, e.Ename, e.Sal, d.Deptno, d.Dname FROM
Emp e, Dept d WHERE e.Deptno = d.Deptno;

The above query will return only those rows in which the department number of the Emp
table matches with the department number of the Dept table. The output of the above query
is as follows:

EMPNO ENAME SAL DEPTNO DNAME
------------- ------------ ---------- ------------ ----------------------
 7782 CLARK 2450 10 ACCOUNTING
 7839 KING 5000 10 ACCOUNTING
 7934 MILLER 1300 10 ACCOUNTING
 7369 SMITH 800 20 RESEARCH
 7876 ADAMS 1100 20 RESEARCH
 7902 FORD 3000 20 RESEARCH
 7788 SCOTT 3000 20 RESEARCH
 7566 JONES 2975 20 RESEARCH
 7499 ALLEN 1600 30 SALES
 7698 BLAKE 2850 30 SALES
 7654 MARTIN 1250 30 SALES
 7900 JAMES 950 30 SALES
 7844 TURNER 1500 30 SALES
 7521 WARD 1250 30 SALES

Cartesian Joins
The cartesian join occurs when you select data from two tables and there is no join condition.
It is a join of every row of a table with every row of another table. This only happens, when no
matching join columns are specified in the join condition for the table listed in the FROM
clause. For example, if you have two tables, namely XYZ with 100 rows, and ABC with 200
rows, then the cartesian join will return 20,000 rows.

Consider the following query:

SELECT * FROM Emp, Dept;

The above query will return each row of the Emp table with each row of the Dept table.
Now consider the following query with the WHERE clause:

SELECT * FROM Emp, Dept
WHERE Dept.Deptno = 10
AND Emp.Sal > 2000;

3-46 Learning Oracle 11g: A PL/SQL Approach

The above query will return the details of employees of the department 10 having salary
greater than 2000 from the Emp and Dept tables, as shown in Figure 3-26.

Antijoins
An antijoin between two tables returns those rows from the first table for which there are
no corresponding rows in the second table. It implies that antijoin returns the rows that fail
to match the rows returned by the subquery on the right side. Antijoins are written using the
NOT EXISTS or NOT IN operator.

For example:

SELECT * FROM Emp
WHERE Deptno NOT IN

(SELECT Deptno FROM Dept
WHERE Loc = ‘NEW YORK’);

Semijoins
A semijoin between two tables returns the rows from the first table having one or more matches
in the second table. Semijoins are written using the EXISTS or IN operator.

For example:

SELECT * FROM Dept
WHERE EXISTS

(SELECT * FROM Emp
WHERE Dept.Deptno = Emp.Deptno)
ORDER BY Dname;

The above query will return the list of departments that have at least one employee. The
department name will appear only once in the query output, no matter how many employees
it has.

Figure 3-26 Output of the cartesian join between the Emp and Dept tables

Retrieving Data in SQL 3-47

Table Alias Names
Table alias refers to a different name for a table for the purpose of evaluating the query and
is most often used in a correlated query. You can code the query with an alias for the table
name to make the query easier to code.

For example:

Consider the query given below to retrieve data from two tables:

SELECT Emp.Ename, Dept.Dname
FROM Emp RIGHT OUTER JOIN Dept
ON Emp.Deptno=Dept.Deptno ;

This query can be coded with the alias for the table name as follows:

SELECT E.Ename, D.Dname
FROM Emp E RIGHT OUTER JOIN Dept D
ON E.Deptno=D.Deptno ;

In the above example, the table Emp is referred by the alias E and the table Dept is referred
by the alias D. The above query will return only those rows in which the values of the column
Deptno of the table Emp match with values of the column Deptno of the table Dept.

Column Alias Names
Column alias refers to the different name for a database column expression and this alias is
used for column headings. It does not affect the actual column name. It can be used to show
the name of the column according to the user requirement.

For example:

Consider the query given below:

SELECT Empno, Ename
FROM Emp;

This query can be coded with the alias for the table name in the following way:

SELECT Empno “Number”, Ename “Name”
FROM Emp;

The above query will display two columns from the table Emp. The first column will have the
heading Number and the other column will have the heading Name.

SELECT Empno “Number”, Sal “Basic Salary”, Sal + NVL(Comm, 0) “Net Salary”
FROM Emp WHERE Sal >= 3000;

3-48 Learning Oracle 11g: A PL/SQL Approach

The above query will display three columns from the table Emp. The first column will have
the heading Number, the second column will have the heading Basic Salary, and the third
column will have the heading Net Salary. The output of the above query is as follows:

Number Basic Salary Net Salary
------------ ------------ ----------
7839 5000 5000
7902 3000 3000
7788 3000 3000

Note
The NVL function will be discussed in later chapters.

ACCEPTING VALUES AT RUNTIME
To create an interactive SQL statement, you can define variables in the SQL statement. This
allows the users to supply values at runtime, thus enhancing the ability to reuse your scripts.
SQL*Plus lets you define variables in your scripts. An ampersand (&), followed by a variable
name, prompts for and accepts values at runtime.

For example:

The following SELECT statement queries the Emp table based on the department number
supplied at runtime.

SQL> SELECT Empno, Ename, Job, HireDate, Sal FROM Emp
WHERE Deptno = &Deptno;

The above query will prompt a message Enter value for deptno and the value entered by you
will be assigned to the Deptno variable. The output of the above query is as follows:

Enter value for deptno: 30
old 2: WHERE Deptno = &Deptno
new 2: WHERE Deptno = 30

EMPNO ENAME JOB HIREDATE SAL
---------- ---------- --------- ---------------- ----------
7499 ALLEN SALESMAN 20-FEB-81 1600
7521 WARD SALESMAN 22-FEB-81 1250
7654 MARTIN SALESMAN 28-SEP-81 1250
7698 BLAKE MANAGER 01-MAY-81 2850
7844 TURNER SALESMAN 08-SEP-81 1500
7900 JAMES CLERK 03-DEC-81 950

6 rows selected.

While using substitution variables for the character or date values, you need to enclose the

Retrieving Data in SQL 3-49

variables in single quotes. Otherwise, the user will have to enclose them in quotes at runtime.
If the variables are not enclosed in single quotes, Oracle considers any non-numeric value as
a column name.

Using Substitution Variables
Suppose that you have defined DEPT as a variable in your script, but you want to avoid the
prompt for the value at runtime. To do so, you can define a substitution variable in SQL
*Plus using the DEFINE command. This variable will always have the CHAR data type
associated with it.

For example:

SQL> DEFINE Deptno = 20;
SQL> DEFINE Deptno;
DEFINE DEPTNO = "20" (CHAR)

SQL> SELECT * FROM Emp
2 WHERE Deptno = &Deptno;
old 2: WHERE Deptno = &Deptno
new 2: WHERE Deptno = 20

The output of the query is as follows:

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
---------- ---------- --------- ---------- ----------------- ---------- ---------- ----------
7369 SMITH CLERK 7902 17-DEC-80 800 20
7566 JONES MANAGER 7839 02-APR-81 2975 20
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7876 ADAMS CLERK 7788 23-MAY-87 1100 20
7902 FORD ANALYST 7566 03-DEC-81 3000 20

Saving a Variable for a Session
Consider the following SQL query saved to a file named Demo_Ex.sql. When you execute this
script file, you will be prompted to enter a value for COL1, COL2, and COL3 multiple times:

SQL> SELECT &COL1, &COL2, &FROM &TABLE_NAME
2 WHERE &COL4 = &VAL
3
SQL> SAVE Demo_Ex
Created file Demo_Ex.sql

In the above example, the SQL statement is saved in the file named Demo_Ex.sql. Now, you
can execute this file by using the @ or the START command as shown below:

SQL> START Demo_Ex
Enter value for col1: Empno

3-50 Learning Oracle 11g: A PL/SQL Approach

Enter value for col2: Ename
Enter value for col3: Sal
Enter value for table_name: Emp
old 1: SELECT &COL1, &COL2, &COL3 FROM &TABLE_NAME
new 1: SELECT Empno, Ename, Sal FROM Emp
Enter value for col4: Deptno
Enter value for val: 10
old 2: WHERE &COL4 = &VAL
new 2: WHERE Deptno = 10

EMPNO ENAME SAL
---------- ---------- ----------
7782 CLARK 5981.45
7839 KING 12207.04
7934 MILLER 3173.83

Using Positional Notation for Variables
Instead of variable names, you can also use the positional notation. In this notation, the
values are assigned to variables on the basis of their positions and the variables are identified
by &1, &2, and so on. You can use this notation by using an ampersand (&), followed by a
numeral in the place of a variable name. Consider the following query:

SQL>SELECT Empno, Ename, Job, HireDate, Sal FROM Emp
2 WHERE &1 = &2;

Enter value for 1: Deptno
Enter value for 2: 20
old 2: WHERE &1 = &2
new 2: WHERE Deptno = 20

EMPNO ENAME JOB HIREDATE SAL
---------- ---------- --------- ---------------- ----------
7369 SMITH CLERK 17-DEC-80 800
7566 JONES MANAGE 02-APR-81 2975
7788 SCOTT ANALYST 19-APR-87 3000
7876 ADAMS CLERK 23-MAY-87 1100
7902 FORD ANALYST 03-DEC-81 3000

If you save the above SQL statement as a script file, you can submit the substitution variable
values while invoking the script. Here is an example of saving and executing the script file.

SQL> save Demo_ex2
Created file Demo_ex2.sql
SQL> START demo_ex2 Deptno 10
old 2: WHERE &1 = &2
new 2: WHERE Deptno = 10

Retrieving Data in SQL 3-51

EMPNO ENAME JOB HIREDATE SAL
---------- ---------- --------- ---------------- ----------
7782 CLARK MANAGER 09-JUN-81 5981.45
7839 KING PRESIDENT 17-NOV-81 12207.04
7934 MILLER CLERK 23-JAN-82 3173.83

Answer the following questions and then compare them to those given at the end of this
chapter:

1. The __________ statement is the most popular SQL statement to query a table.

2. In Oracle, the __________ clause is used to prevent the selection of duplicate rows in a
table.

3. The __________ operators are used to compare one expression with another.

4. The __________ clause is used to select, delete, or update only those rows in which the
expression evaluates to true.

5. The __________ operator is used to compare the character string with the matching
pattern.

6. The SELECT statement is used to retrieve or view the data from one or more tables.
(T/F)

7. You can define the WHERE clause with only one condition. (T/F)

8. The BETWEEN operator is used to retrieve rows that fall within a specified range. (T/F)

9. The IN operator is used to retrieve rows based on the multiple value conditions. (T/F)

10. The DEFINE command is used to define a substitution variable in SQL *Plus. (T/F)

11. Which of the following is not a logical operator?

(a) AND (b) OR
(c) NOT (d) IN

12. Which of the following clause is used to filter the data from the database?

(a) WHERE (b) DESC
(c) GROUP BY (d) ORDER BY

Self-Evaluation Test

3-52 Learning Oracle 11g: A PL/SQL Approach

13. Which of the following operators is used to combine the results from two or more queries
into a single result.

(a) IN (b) SET
(c) LIKE (d) All of these

14. Which of the following clauses is used to arrange the data retrieved from a table into
sorted order?

(a) HAVING (b) GROUP BY
(c) ORDER BY (d) WHERE

15. Which of the following is the aggregate function?

(a) SUM (b) COUNT
(c) Both (a) and (b) (d) None of these

Answer the following questions:

1. You can define the __________ clause with multiple conditions.

2. The __________ operator joins two or more than two conditions, and ensures that the
rows satisfying the conditions are selected.

3. The __________ operator joins two or more than two conditions, and ensures that the
rows satisfying any one of the conditions are selected.

4. The __________ operator joins the result set of the two SELECT statements.

5. The __________ operator returns distinct rows retrieved by either of the queries.

6. Set operators are used to combine the results from two or more queries into a single
result. (T/F)

7. The UNION operator returns the difference between two sets. (T/F)

8. Set operators are not used with the SELECT statements containing the TABLE collection
expressions. (T/F)

9. The GROUP BY clause is used in the SELECT statement to collect data across multiple
records and group the results by one or more columns. (T/F)

10. The LEFT OUTER JOIN returns all rows of the first table and only those rows from the
second table that follow the join condition. (T/F)

Review Questions

Retrieving Data in SQL 3-53

11. Which of the following operators are used to compare one expression with another
expression?

(a) Arithmetic (b) Logical
(c) Comparison (d) None of these

12. Which of the following is the correct syntax for using the AND operator:

(a) SELECT Column1, Column2..........
 From Table
 WHERE Condition1 AND Condition2;
(b) SELECT Column1, Column2..........
 FROM Table
 WHERE Condition1 & Condition2:
(c) SELECT Column1, Column2..........
 FROM Table
 WHERE Condition1 && Condition2.
(d) None of these.

13. Which of the following keywords belongs to the SET operators?

(a) UNION (b) MINUS
(c) Both (a) and (b) (d) None of these

14. Which of the following operators cannot be applied on the columns of a data type?

(a) BLOB (b) BFILE
(c) Both (a) and (b) (d) None of these

15. Which of the following joins returns a null value in place of the rows which do not match
the join condition from the other table.

(a) INNER JOIN (b) OUTER JOIN
(c) LEFT OUTER JOIN (d) RIGHT OUTER JOIN

3-54 Learning Oracle 11g: A PL/SQL Approach

Write a query using the INTERSECT command.

Write a query to return all distinct rows retrieved by either of the queries using the UNION
operator.

Write a query to display the names of those employees who earn the lowest salary in a
department.

Answers to Self-Evaluation Test
1. SELECT, 2. DISTINCT, 3. comparison, 4. WHERE, 5. LIKE, 6. T, 7. F, 8. Y, 9. T, 10. T,
11. c, 12. a, 13. b, 14. c, 15. d.

Exercises

Exercise 1

Exercise 2

Exercise 3

