
Chapter 2

Introduction to SQL
 Learning Objectives
After completing this chapter, you will be able to:
• Understand SQL *Plus buffer commands
• Understand various data types
• Understand various types of constraints
• Create a table
• Modify and delete a table
• Understand the use of Oracle SQL Developer
• Create and modify tables using Oracle SQL Developer

2-2 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

INTRODUCTION
SQL (pronounced as “ess-que-el”) stands for Structured Query Language. It is a specialized
non-procedural language used to communicate with a database. The statements of SQL are
used to perform various tasks such as inserting, updating, or retrieving data from a database.
According to ANSI (American National Standards Institute), SQL is a standard language for the
relational database management system. A variety of established database products support SQL,
including the products of Oracle and Microsoft. Unfortunately, there are many different versions
of SQL, but according to ANSI, they must support the same major keywords in a similar manner
such as SELECT, INSERT, UPDATE, DELETE, WHERE, and so on. The standard SQL
commands such as SELECT, INSERT, UPDATE, DELETE, CREATE, and DROP can be used
to work with a database.

This chapter will describe the basics of each of these commands and allow you to put them for
practice using the SQL Interpreter.

History of SQL
The model of RDBMS (Relational Database Management System) was first introduced by
Dr. E. F. Codd (Dr. Edgar Frank Codd). In June 1970, Codd published a paper “A Relational
Model of data for Large Shared Data Banks”, which was later accepted as the model for
RDBMS. The first version of SQL was developed in the early 1970s. This version, initially called
SEQUEL, was designed to manipulate and retrieve the stored data. Later, the SQL language
was standardized by American National Standards Institute (ANSI) in 1986. The subsequent
versions of the SQL standard were released as per the norms of International Organization for
Standardization (ISO). Later in 1979, Relational Software Corporation, now known as Oracle
Corporation, introduced SQL as the first commercial database language. Since then, this
language has been accepted as the standard RDBMS language.

Introduction to SQL *Plus
SQL *Plus is an extension of the standard SQL and has an online command interpreter. SQL *Plus
program allows you to store and retrieve data in the Relational Database Management System.
It is frequently used by the database administrators and developers to interact with the Oracle
database system. It is an interface for SQL and PL/SQL languages. SQL *Plus is a reporting
tool that is used as an interface between the Client and the Server of Oracle database. Using
SQL *Plus, a user can create program files and generate the formatted reports.

SQL *Plus is used by the application developers to:

1. Create and modify the database.

2. Create, replace, alter, and drop objects.

SQL *Plus is used by the end-users to:

1. Query the data.

2. Retrieve data from the database.

Introduction to SQL 2-3

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

SQL *Plus is used by the Database Administrators to:

1. Create users.

2. Specify rights and privileges to users.

3. Monitor the database.

4. Control the access to the database and its objects.

5. Maintain consistency and integrity of the database.

6. Maintain Backup and Recovery of database.

7. Maintain Performance and Tunning of database.

Loading SQL *Plus
The following steps are required to start SQL *Plus:

1. Choose Start > All Programs > Oracle-OraDB12Home1 > Application
Development > SQL Plus from the taskbar; the SQL Plus window will be displayed, as
shown in Figure 2-1, prompting you to enter the user name.

Figure 2-1 The SQL Plus window

2. In this window, enter the user name sys as sysdba and then press ENTER; you will be
prompted to enter a password. Enter the password and then press ENTER; the SQL Plus
window will be displayed, as shown in Figure 2-2.

2-4 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 2-2 The SQL Plus window with SQL prompt

The SQL> prompt shown in Figure 2-2 is called the SQL command line or the SQL prompt
of SQL *Plus.

Note
1. You can use either the username and password which you have set while installing Oracle or
the one which your Oracle DBA has provided to you.

2. The password will not be visible while entering it.

Changing the Preferences of SQL Plus Window
You can change the background color and font of SQL Plus window by performing the following
steps:

1. Right-click on the title bar of the SQL Plus window; a menu will be displayed.

2. Choose Properties; the “SQL Plus” Properties window will be displayed, refer to Figure 2-3.

3. Choose the Font tab from the properties window. You can change the font from the Font
list and font size from the Size list.

4. Choose the Colors tab; the options of the Colors tab will be displayed, as shown in Figure
2-4. In the Colors tab, choose the Screen Text option and then select the color from the
color bar to change the text color. Choose the Screen Background option and then select
the color from the color bar to change the background color of the SQL Plus window.

Introduction to SQL 2-5

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 2-3 The “SQL Plus” Properties window

Figure 2-4 The “SQL Plus” Properties window with the Colors tab selected

2-6 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Exiting the SQL Plus Window
You can exit SQL Plus window by using any of the following ways:

1. Enter EXIT or QUIT at the SQL command window and then press ENTER.

2. Choose the Close button from the top right corner of the SQL Plus window title bar.

Note
EXIT and QUIT are not case-sensitive.

Unlocking the HR Database
HR is a sample database which is installed automatically during the installation of Oracle 12c.
In this book, HR database is being used in the examples. Before using the HR database, you
need to unlock the database and user HR.

To unlock the HR database, you need to follow the steps given below:

1. First, connect Oracle database as SYSDBA.

2. Now, you need to check the container Id of the pluggable database which was created during
the installation of Oracle 12c. To do so, enter the following command at SQL prompt:

 SELECT name, con_id FROM v$pdbs;

 The output of this command will be as follows:

 NAME CON_ID
 ---------------------- --------------------------
 PDB$SEED 2
 PDBORACLE12C 3

Note
The pluggable database name displayed above (PDBORACLE12C) depends on the name
mentioned during the installation of Oracle 12c.

In this case, the pluggable database name is PDBSORACLE12C.

3. Next, you need to check the service name of the pluggable database by providing its container
Id. To do so, enter the following command at SQL prompt:

 SELECT name FROM v$active_services WHERE con_id=3;

The output of this command will be as follows:

 NAME
 --
 pdboracle12c

Introduction to SQL 2-7

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

4. Now, go to the directory where you have installed Oracle 12c and open the file Product >
12.1.0 > dbhome_1 > NETWORK > ADMIN > tnsnames.ora in Notepad.

5. In the tnsnames.ora file, you need to add the service name of your pluggable database. To
do so, add the following code at the end of the file:

 PDBORACLE12C =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = pdboracle12c)
)
)

6. Save and close the tnsnames.ora file.

7. Now, reload the listener service as you have added a service to the tnsnames.ora file. To do
so, open the command prompt as an administrator and run the following command at
command prompt:

 C:/>lsnrctl reload

8. Next, you need to check the open mode status of the pluggable database. To do so, enter
the following command in SQL prompt:

 SELECT name, open_mode from v$pdbs;

 The output of this command will be as follows:

 NAME OPEN_MODE
 ------------------------ --------------------
 PDB$SEED READ ONLY
 PDBORACLE12C MOUNTED

9. Next, you need to change the state of the pluggable database. To do so, enter the following
statement to open the pluggable database:

 ALTER Pluggable Database PDBORACLE12C OPEN;

Note
You need to open the pluggable database each time you start working with Oracle 12c database.

10. Next, you need to alter the container before connecting to HR database. The default
container is CDB$ROOT. To alter the container, enter the following ALTER command at
SQL prompt:

 ALTER SESSION SET CONTAINER=pdboracle12c;

2-8 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
 To verify that the container is altered or not, enter the following command at SQL prompt:

 SHOW con_name

11. Now, you need to unlock the HR user. To do so, enter the following command to unlock
the user:

 ALTER USER hr IDENTIFIED BY hr ACCOUNT UNLOCK;

12. Now, enter the following command to connect HR database at SQL prompt:

 conn hr/hr@pdboracle12c

13. Enter the following command at the SQL prompt:

 SELECT COUNT(*) FROM EMPLOYEES;

 The result shows 107 as row count of the EMPLOYEES table confirming that the HR Schema
is unlocked successfully.

SQL *Plus Buffer Commands
In SQL *Plus, when you enter a statement, the statement is stored in the memory. This memory
is referred to as SQL buffer or command buffer. When you enter another statement, the first
statement is replaced with the new one and all the entered inputs are stored as a single SQL
*Plus statement in the command buffer. If you press ENTER while entering SQL statement in
SQL *Plus, the control will be transferred to the new line. However, if the previous line is ended
with a semicolon or single slash, the SQL statement will be executed. SQL *Plus has provided
some buffer commands that are discussed next.

L[IST]
The List or L command is used to display the content of the SQL buffer. The syntax for using
the List or L command is as follows:

SQL> LIST or L

If the command is a single line command, the line itself will be the current line. In the multi-line
command, by default, the last line will be the current line. The current line is marked by the * sign.

For example:

SQL>SELECT * FROM EMPLOYEES;
SQL>LIST

The result of the second command will be as follows:

1 * SELECT * FROM EMPLOYEES;

Introduction to SQL 2-9

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Here, the first command line was stored in the buffer. As a result, the second command line will
display the contents of the SQL buffer.

Making a Line as the Current Line
To make a line as the current line, type the line number at the SQL command window and press
ENTER; the specified line will become the current line.

For example:

SQL>2

The given command will make the second line in the SQL Plus window as the current line.

I[NPUT]
The INPUT or I command is used to add lines to the existing command or the current command
in the buffer. The syntax for using the INPUT command is as follows:

SQL>INPUT text or I text

In the above syntax, text is the text or string that you want to add to the existing command.

For example:

SQL>SELECT * FROM EMPLOYEES

To add one or more lines to the above SQL query, enter the following statement:

SQL>INPUT WHERE SALARY>20000;

The result of the above SQL query will be same as that of the following query:

SQL>SELECT * FROM EMPLOYEES
WHERE SALARY>20000;

DEL
The DEL command is used to delete the current line from the buffer. This command is used
alone or with * to delete the current line.

The syntax for using the DEL command is as follows:

SQL>DEL

For example:

Enter the following command to view the buffer data and to delete the current line in the buffer:

2-10 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
SQL> L
1 SELECT * FROM EMPLOYEES
2* WHERE EMPLOYEE_ID = 105
SQL> DEL
SQL> L

The output after deleting the specified line from the buffer is as follows:

1* SELECT * FROM Employees
SQL>

You can get the same result by using the * with the DEL command as follows:

SQL> DEL *
SQL>

The DEL command can also have the following syntax:

DEL m n

The DEL m n command is used to delete lines from m through n. If you substitute * for m or
n, it will imply the current line.

The following command will delete the specified line from the buffer:

1 SELECT FIRST_NAME, SALARY, HIRE_DATE
2 FROM EMPLOYEES
3* WHERE EMPLOYEE_ID = 108
SQL> DEL 2
SQL> L

The output after deleting the second line from the buffer is as follows:

1 SELECT FIRST_NAME, SALARY, HIRE_DATE
2* WHERE EMPLOYEE_ID = 108
SQL>

The following command will also delete the specified line from the buffer:

1 SELECT FIRST_NAME, SALARY, HIRE_DATE
2 FROM EMPLOYEES
3* WHERE EMPLOYEE_ID = 108
SQL> DEL 2 *
SQL> L

The output after deleting the specified line from the buffer is as follows:

Introduction to SQL 2-11

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

1* SELECT FIRST_NAME, SALARY, HIRE_DATE
SQL>

The DEL LAST command will delete the last line from the buffer:

SQL> L
1 SELECT FIRST_NAME, SALARY, HIRE_DATE
2 FROM EMLOYEES
3* WHERE EMPLOYEE_ID = 108
SQL> DEL LAST
SQL> L

The output after deleting the specified line from the buffer is as follows:

1 SELECT FIRST_NAME, SALARY, HIRE_DATE
2* FROM EMLOYEES
SQL>

A[PPEND]
The APPEND or A command is used to append more statement lines to the current line. The
syntax for using the APPEND command is as follows:

SQL> APPEND text or A text

In the above syntax, text is the text or string that you want to append to the current line.

For example:

SQL> L
1 SELECT FIRST_NAME, SALARY, HIRE_DATE
2* FROM EMLOYEES
SQL>A; or APPEND;

The above command will add the (;) semicolon at the end of the current line. The output of
the above command is as follows:

1 SELECT FIRST_NAME, SALARY, HIRE_DATE
2* FROM EMLOYEES;

C[HANGE]
The CHANGE or C command is used to find and replace the string in the current line of the
SQL buffer. The syntax for using the CHANGE command is as follows:

CHANGE/Old_Value/New_Value or C/Old_Value/New_Value

In the above syntax, Old_Value is the existing value in the command line, whereas New_Value
is the new value, which replaces the Old_Value.

2-12 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
For example:

If you want to change the first occurrence of Empno to Employee_Id, enter the following SQL
statement in SQL Plus window:

SELECT EMPNO, FIRST_NAME FROM EMPLOYEES;

SQL>C/EMPNO/EMPLOYEE_ID;

The above command will change the first occurrence of EMPNO to EMPLOYEE_ID. The
output of the above command is as follows:

SELECT EMPLOYEE_ID, FIRST_NAME FROM EMPLOYEES;

/ (SLASH)
The / (slash) command is used to execute the current command in the SQL buffer. The syntax
for using the / (slash) is as follows:

SQL>/

SAV[E]
The SAVE or SAV command is used to save the command line in a file for future use. The syntax
for using the SAVE command is as follows:

SQL>SAVE File_Name or SQL>SAV File_Name

The above command creates the file File_Name with the extension .sql.

For example:

SQL> SAVE Info

The above command will save the command lines to a file with the name Info.sql. This file will
be saved at Product > 12.1.0 > dbhome_1 > BIN.

The syntax for using the SAVE command to create, append, or replace data in the existing file
is as follows:

SQL>SAVE File_Name [option]

The above command stores the command line to the file File_Name and the option can have
the following possible options: CRE[ATE], APP[END], REP[LACE].

For example:

SQL> SAVE Info APP

The above command will add the command lines to the existing file Info.

Introduction to SQL 2-13

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

REP[LACE]
The REPLACE or REP command is used to overwrite the command lines on the existing file.
The syntax for using the REPLACE command is as follows:

SQL>SAVE File_Name REP[LACE]

In the above syntax, File_Name is the name of the file in which you want to overwrite the
command lines.

For example:

SQL>SELECT * FROM EMPLOYEES WHERE EMPLOYEE_ID=100
2
SQL>SAVE Info REP
Wrote file Info.sql

After issuing the SAVE command, Oracle will replace the content of the Info.sql file with the
current command or statement issued at SQL prompt.

GET
The GET command is used to read the command lines from the SQL file and insert into the
buffer. The syntax for using the GET command is as follows:

SQL>GET File_Name

In the above syntax, File_Name is the name of the file from where you want to read the command
lines.

For example:

SQL>GET Info
 1* select * from employees where employee_id=100

The above issued GET command will list all the content of the Info.sql at SQL prompt.

START
The START command is used to load and execute the specified file of SQL *Plus
commands. The syntax for using the START command is as follows:

SQL>START File_Name

In the above syntax, File_Name is the name of the specified file from where you want to load
and execute the command lines.

ED[IT]
The EDIT or ED command is used to edit the command lines or the contents of the SQL buffer
or the existing file. The syntax for using the EDIT command is as follows:

2-14 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
SQL>EDIT File_Name

In the above syntax, File_Name is the name of the file whose contents you want to edit.

Note
If File_Name has the extension .sql, there is no need to write the file name with extension; but if
it is other than this, extension has to be specified.

@ (‘at’ sign) or @@ (double ‘at’ sign)
The @ or @@ command is used to execute the commands saved in the SQL file. The SQL file
is a normal text file, and is created using Notepad. The file can be called from the local system
or from the web server. The syntax for using the @ command is as follows:

@{File_Name [.ext]}

The syntax for using the @@ command is as follows:

@@{File_Name [.ext]}

In the above syntax, File_Name is the name of the file, whose contents you want to execute.
Note that you need to specify the path of that particular file.

For example:

For using the @ and @@ commands, you need to perform the following steps:

1. Before starting the example, it is recommended that you create a folder with the name
oracle_12c in C drive. The oracle_12c will be the main folder, it will contain the folders of
all chapters and chapter folders will contain the example files. Now, create c02_oracle_12c
folder for this chapter. Enter the following statement in the Notepad editor and save this
file in the C:\oracle_12c\c02_oracle_12c with file name as sqls.txt.

 SELECT EMPLOYEE_ID, FIRST_NAME, JOB_ID, HIRE_DATE, SALARY
 FROM EMPLOYEES WHERE DEPARTMENT_ID IN (30,60);

2. Execute the contents of the file by using the @ or @@ command. To do so, enter the
following command in the SQL Plus window:

 @@“C:\oracle_12c\c02_oracle_12c\sqls.txt”

 or

 @“C:\oracle_12c\c02_oracle_12c\sqls.txt”

 The above command will execute the contents of the file sqls.txt and list all rows of the
EMPLOYEES table, as shown in Figure 2-5.

Introduction to SQL 2-15

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 2-5 Data of the EMPLOYEES table displayed on using the @@ command

RUN
The RUN command is used to list and execute the commands stored in the SQL buffer. The
syntax for using the RUN command is as follows:

SQL>RUN

DESC[RIBE]
The DESCRIBE or DESC command is used to view the information about the objects of the
Oracle database such as tables, views, and so on. When you use the DESCRIBE command
with a table or a view, it gives the information such as column name, data type, width of data
column. Also, it gives information about each column of a table whether it will allow NULL
or NOT NULL value. When you use the DESCRIBE command with a procedure, function, or
package, you will get information like name, data type, mode IN/OUT, and default values of
arguments.

The syntax for using the DESC command is as follows:

DESC Object_Name

In the above syntax, DESC is the keyword and Object_Name is the name of a table, view, type,
function, procedure, package, or synonym that you want to describe.

For example:

To view the structure of the EMPLOYEES table, enter the following command:

SQL> DESC EMPLOYEES

2-16 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
The output of this command is shown in Figure 2-6.

Figure 2-6 Description of the EMPLOYEES table

Also, if you want to view the information regarding the package DBMS_OUTPUT, enter the
following command in SQL Plus window (SQL prompt):

SQL>DESC DBMS_OUTPUT

The output of this command will be as follows:

PROCEDURE DISABLE
PROCEDURE ENABLE
Argument Name Type In/Out Default?
-------------- ------ --------- --------
BUFFER_SIZE NUMBER(38) IN DEFAULT

PROCEDURE GET_LINE
Argument Name Type In/Out Default?
-------------- ------ --------- ---------
LINE VARCHAR2 OUT
STATUS NUMBER(38) OUT

PROCEDURE GET_LINES
Argument Name Type In/Out Default?
------------- ------ --------- --------
LINES TABLE OF VARCHAR2(32767) OUT
NUMLINES NUMBER(38) IN/OUT

Introduction to SQL 2-17

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

PROCEDURE GET_LINES
Argument Name Type In/Out Default?
-------------- ------ ------- --------
LINES DBMSOUTPUT_LINESARRAY OUT
NUMLINES NUMBER(38) IN/OUT

PROCEDURE NEW_LINE
PROCEDURE PUT
Argument Name Type In/Out Default?
-------------- ------ --------- --------
A VARCHAR2 IN

PROCEDURE PUT_LINE
Argument Name Type In/Out Default?
-------------- ------ --------- --------

A VARCHAR2 IN

CL[EAR] BUFF[ER]
The CLEAR BUFFER command is used to clear the SQL buffer. This command deletes all lines
from the buffer. The syntax for using the CLEAR BUFFER command is as follows:

SQL> CLEAR BUFFER or CL BUFF

For example:

List the contents of the SQL buffer by entering the following command:

SQL> L

The output of this command will be as follows:

1 SELECT Employee_Id, First_name
2* FROM Employees WHERE Employee_Id = 108;

Now, enter the CLEAR BUFFER command to clear the SQL buffer:

SQL> CL BUFF or CLEAR BUFFER

After executing the above command, a message buffer cleared will be displayed, confirming
that the buffer has been cleared.

Again, list the contents of the SQL buffer; a message No lines in SQL buffer will be prompted,
as shown below:

SQL> L
No lines in SQL buffer.

2-18 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
SPOOL
The SPOOL command is used to direct the output from the SQL command line to a disk file.
This enables you to save the output for future review. The syntax for using the SPOOL command
is as follows:

 SQL>SPOOL file_name

To start spooling the output into an operating system file, you need to enter the SPOOL command
followed by the corresponding file name.

For example:

SQL> SPOOL my_log_file.log
SQL>

The given command will create a new file named my_log_file.log.

Now enter the following statement:

SQL> SELECT * FROM EMPLOYEES WHERE DEPARTMENT_ID=30;

The output of the above command will be saved in the my_log_file.log file. Now, to stop spooling
and close the file enter the following command:

SQL> SPOOL OFF
SQL>

Enter the following command at SQL prompt:

SQL> GET my_log_file.log

This command displays all the content of the my_log_file.log file.

The following command will append the output to the existing file my_log_file.log:

SQL> SPOOL my_log_file.log APPEND
SQL>

The following command will stop the spooling and close the file:

SQL> SPOOL OFF
SQL>

afiedt.buf
The afiedt.buf file is the default edit file of SQL *Plus. When you execute the ED or EDIT
command without arguments, the last SQL or PL/SQL statement will be saved in this file and
the file will open in the default editor, as shown in Figure 2-7.

Introduction to SQL 2-19

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 2-7 The file displayed in the default editor afiedt.buf

The following example will illustrate the use of the INPUT and SAVE commands to save
SQL *Plus commands in a file.

Note
The example files used in this chapter can be downloaded from www.cadcim.com. The path to access
the example files is as follows: Textbooks > Computer Programming > Oracle.

Example 1
Write queries to illustrate the use of the INPUT and SAVE commands to save commands in a
file using the EMPLOYEES table.

1. To compose and save the SQL query using the INPUT command, you need to clear the
buffer by entering the following command in the SQL Plus window.

 SQL> CLEAR BUFFER

2. Now, enter the INPUT command in SQL Plus window and press ENTER to enter the
following statements:

 SQL> INPUT
 1 SELECT EMPLOYEE_ID, FIRST_NAME, SALARY, COMMISSION_PCT
 2 FROM EMPLOYEES
 3 WHERE JOB_ID = ‘SA_MAN’
 4 ORDER BY SALARY
 5
 SQL>

Note
Make sure you do not enter a semicolon at the end of the command.

2-20 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
3. Enter the SAVE command in SQL Plus window to store the query in a file called employeeRep

with the extension SQL, as shown in Figure 2-8.

 SQL> SAVE C:\oracle_12c\c02_oracle_12c\employeeRep
 Created file C:\oracle_12c\c02_oracle_12c\employeeRep.sql

Figure 2-8 Saving commands using the INPUT and SAVE commands

4. To check whether commands are saved in the file employeeRep.sql, enter the START command
in SQL Plus window.

 SQL> START C:\oracle_12c\c02_oracle_12c\employeeRep

 The output of the above command is shown in Figure 2-9.

Figure 2-9 Running a command file using the START command

The following example will illustrate the use of the APPEND and LIST commands to append
text to a command line.

Example 2
Write a query to illustrate the use of the APPEND and LIST commands by using the
EMPLOYEES table.

Introduction to SQL 2-21

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The following steps are required to add text at the end of a line in the buffer by using the
APPEND command:

1. Enter the GET command to open the file employeeRep.sql, as shown in Figure 2-10.

 SQL>GET C:\oracle_12c\c02_oracle_12c\employeeRep

2. Now, to append a space and the clause DESC to line 4 of the current query, first you need
to list line 4 as the current line by entering the following command in SQL Plus window,
refer to Figure 2-10.

 SQL>LIST 4
 4* ORDER BY Salary

3. Next, enter the following command to add the space and the clause DESC to the end of the
current line, refer to Figure 2-10.

 SQL>APPEND DESC
 4* ORDER BY Salary DESC

4. Now, enter the RUN command at SQL prompt and press ENTER. The RUN command
will list the contents of the buffer and execute them, refer to Figure 2-10. The output of the
query will be sorted in the descending order on the basis of the Salary.

Figure 2-10 Appending text to a line using the APPEND command

2-22 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Comments within SQL Statements
Comments can make your application easy to read and maintain. For example, you can add a
comment in a statement that describes the purpose of that statement in your application. Note
that the comments added within the SQL statements do not affect their execution.

A comment can appear between keywords, punctuation marks, or parameters in a statement.
You can add a comment in a statement in two ways:

1. The comment begins with a slash and an asterisk (/*) and ends with an asterisk and a slash
(*/). The comment text can have multiple lines. The opening and terminating characters
need not to be separated from the text by a space or a line break.

2. The comment begins with -- (two hyphens) and ends with a line break. The comment text
in this case cannot have multiple lines.

CUSTOMIZING THE SQL *PLUS ENVIRONMENT
You can customize the SQL *Plus environment by setting the environment variables as per your
convenience or requirement. SQL *Plus has a set of environment variables that control the way
SQL *Plus displays data and assigns special characters. The commands that are used to modify
the environment variables are discussed next.

SET Command
The SET command is used to customize or alter the environment of SQL *Plus for the current
session by changing the values of environment variables.

For example, you can use this command to set the display width for data, customize HTML
formatting, enable or disable printing of column headings, and also set the number of lines
per page and page size.

The syntax for using the SET command is as follows:

SET Variable Value

Table 2-1 lists various environment variables that are commonly adjusted using the SET
command.

Table 2-1 Common environment variables used with the SET command

Environment Variable Description

ARRAY[SIZE] {15|n} Sets the size of the data that SQL *Plus will fetch
from the database at one time.

AUTO[COMMIT]
{OFF|ON|IMM[EDIATE]|n}

Whenever a change is made in the database
by SQL or PL/SQL statements, Oracle will
automatically save the change.

Introduction to SQL 2-23

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

AUTOT[RACE]
{OFF|ON|TRACE[ONLY]}
[EXP[LAIN]]
[STAT[ISTICS]]

Displays a trace report on the successful execution
of DML statements

COLSEP {_|text} Sets the text to be printed between the selected
columns

DEF[INE] {‘&’|c|OFF|ON} Sets the character used to prefix substitution
variables to c

ECHO {OFF|ON} Controls whether the command will be displayed
when it is run by the START or @ command

EDITF[ILE] filename[.ext] Sets the default file name for the EDIT command

EMB[EDDED] {OFF|ON} Sets the report feature on or off

ESC[APE] {\|c|OFF|ON} Defines the character that is entered as escape
character

FEED[BACK]
{6|n|OFF|ON}

Displays the number of records returned by a
query when the query selects at least n records

FLAGGER
{OFF|ENTRY|INTERMED
[IATE]|FULL}

Ensures that the SQL statements confirm to the
ANSI/ISO SQL92 standard

HEA[DING] {OFF|ON} Sets the column headings on or off in reports

HEADS[EP] {||c|OFF|ON} Defines the character that you enter for the
heading separator

LIN[ESIZE] {80|n} Sets the total number of characters that SQL
*Plus displays in one line before starting a new
line

NEWP[AGE] {1|n|NONE} Sets the number of blank lines between the top of
each page and the title of the page

NUMF[ORMAT] format Sets the default number format

NUM[WIDTH] {10|n} Sets the default width for numbers to display

PAGES[IZE] {24|n} Sets the number of lines in each page

PAU[SE] {OFF|ON|text} Allows you to control the scrolling of your
terminal when the reports are running

SERVEROUT[PUT]
[FOR[MAT] {WRA[PPED]|
WOR[D_WRAPPED]
|TRU[NCATED]}]

Controls whether to display the output
(DBMS_OUTPUT.PUT_LINE) of the stored
procedures or PL/SQL block in SQL *Plus

SHOW[MODE] {OFF|ON} Displays the old and new settings of a SQL *Plus
system variable

SQLBL[ANKLINES]
{ON|OFF} SQLC[ASE]

Allows blank lines within an SQL command

2-24 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

SQLCO[NTINUE] {> |text} Controls the line continuation prompt when a
command does not fit in a line and needs to be
continued. The default continuation character is
the hyphen (-)

SQLN[UMBER] {OFF|ON} Sets the prompt for the second and the
subsequent lines of the SQL statement

SQLPRE[FIX] {#|c} Sets the SQL *Plus prefix character that you use
with an SQL *Plus command in a separate line
to execute the command immediately without
affecting the SQL statement being entered

SQLP[ROMPT] {SQL>|text} Sets the SQL *Plus command prompt

SQLT[ERMINATOR]
{;|c|OFF|ON}

Sets the character that is used to terminate and
execute SQL statements

SUF[FIX] {SQL|text} Sets the default file extension for SQL *Plus
scripting

TERM[OUT] {OFF|ON} Controls the display of the output generated by
executing the contents of a file

TI[ME] {OFF|ON} Shows the current time at the command prompt

TIMI[NG] {OFF|ON} Controls the display of timing statistics when an
SQL command and PL/SQL block is run

TRIM[OUT] {OFF|ON} Specifies whether to allow blank space at the end
of each displayed line

TRIMS[POOL] {ON|OFF} Specifies whether to allow blank spaces at the end
of each spooled line

UND[ERLINE]
{-|c|ON|OFF}

Sets the character that is used to underline column
headings in SQL *Plus

VER[IFY] {OFF|ON} Determines whether SQL Plus will list the text of a
command before and after replacing substitution
variables with values

WRA[P] {OFF|ON} Specifies whether to truncate or wrap the display of
a selected row if the width of the current line is long

SHOW Command
The SHOW command is used to display the current value of variables from the SQL *Plus
environment setting. The variables used with the SET command can also be used with the
SHOW command, refer to Table 2-1. For example, the following statement displays the current
value of PAGESIZE and LINESIZE:

SQL>SHOW PAGESIZE LINESIZE

The output of this command will be as follows:

pagesize 14

Introduction to SQL 2-25

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

linesize 80

The following example will illustrate the use of the SET command:

Enter the following statement in SQL Plus window:

SELECT * FROM Employees;

The above statement will return all rows of the EMPLOYEES table, as shown in Figure 2-11.

Figure 2-11 Output of the SELECT statement before setting the environment

Now, issue the following command:

SQL>SET PAGESIZE 24

This command will set the page size to 24.

SQL>SET LINESIZE 230 PAGESIZE 90

This command will set the line size to 230 and the page size to 90. Now, reissue the following
statement to display all rows of the EMPLOYEES table, as shown in Figure 2-12.

2-26 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
SELECT * FROM EMPLOYEES;

Figure 2-12 Output of the SELECT statement after setting the environment

In the previous output, single row of the EMPLOYEES table is displayed in two or three lines.
After setting the line size and page size, the output of a row is displayed in single line.

You can set multiple environment variables using the following single SET command:

SQL>SET TIME ON LINESIZE 130 PAGESIZE 30

This command will display the time on the left side of the SQL prompt and set the page and
line size, as shown in Figure 2-13.

Figure 2-13 Using the TIME, LINESIZE, and PAGESIZE options

DATA TYPES
All the data that is stored or manipulated by Oracle database has a data type. A data type specifies
what type of value a column or an argument can store. The data type of a column associates a

Introduction to SQL 2-27

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

fixed set of properties with the values stored in the column. These properties cause Oracle to
treat the values of one data type differently from the values of another data type. When you
create a table or cluster and procedure or stored function, you need to specify the data type for
each of its columns and arguments respectively.

Oracle database provides number of built-in data types and some user-defined types which can
be used as data types. The user-defined types will be discussed in later chapters. The in-built
data types of Oracle can be broadly classified into the categories, as listed in Table 2-2.

Table 2-2 In-built data types of Oracle

Category Data Type
Character CHAR, NCHAR, VARCHAR, VARCHAR2, and

NVARCHAR2
Number NUMBER, Fixed-point, Floating-point,

BINARY_FLOAT, and BINARY_DOUBLE
Date DATE, TIMESTAMP, TIMESTAMP WITH TIME

ZONE,
TIMESTAMP WITH LOCAL TIME ZONE, and
INTERVAL YEAR TO MONTH, and INTERVAL
DAY TO SECOND

LOB BLOB, CLOB, BFILE, and NCLOB
Rowid ROWID and UROWID
Any Types ANYTYPE, ANYDATA, and ANYDATASET
XML Types XMLType, URI Data Types (URIType, DBURIType,

XDBURIType, and HTTPURIType), and URIFactory
Package

Spatial Types SDO_GEOMETRY, SDO_TOPO_GEOMETRY,
SDO_GEORASTER

Character Data Type
The Oracle database provides character data types to store character values. The character
values also include the alphanumeric data which comprises letters, numbers, spaces, symbols,
and punctuations. These data types are discussed next.

CHAR
The CHAR data type is used to store the fixed length character data. The maximum length of
data that it can store is 2000 bytes or characters. The default length for CHAR data type is 1 byte.
The syntax for declaring column with the CHAR data type is as follows:

column_name CHAR(width)

2-28 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
In the above syntax, column_name is the name of the column having the CHAR data type and
width is optional, which can be any integer value ranging from 1 to 2000. If you do not specify
the value of width, the default value will be set.

In the CHAR columns of Oracle database, if you insert a value that has the shorter length than
the column length, Oracle inserts blank spaces to the value to match the column length. If you
try to enter a value that exceeds the column length, the Oracle database will return an error.

NCHAR
The NCHAR data type is used to store the unicode character data having fixed length character
string. This data type can hold up to 2000 characters. Defining national character set in the
database determines the maximum length of the column. When you create a table with a column
having NCHAR data type, you define the column length in characters.

The syntax for declaring column with the NCHAR data type is as follows:

column_name NCHAR(width)

In the above syntax, column_name is the name of the column having the NCHAR data type
and width is an integer value that ranges from 1 to 2000.

For example:

Status NCHAR(1)

In the above example, the column Status is of the NCHAR data type and has width of 1 unit.

VARCHAR
The VARCHAR data type is used to store a variable-length character string. The maximum
width of the VARCHAR data type is 4000 bytes or characters. It is recommended to use the
VARCHAR2 data type rather than the VARCHAR data type.

The syntax for declaring column with the VARCHAR data type is as follows:

column_name VARCHAR(width)

In the above syntax, column_name is the name of the column having the VARCHAR data type
and width is an integer value that ranges from 1 to 4000. If you do not specify the value of
width, Oracle will return an error.

VARCHAR2
The VARCHAR2 data type is also used to store a variable-length character string. While creating
the VARCHAR2 column, you can specify the maximum number of bytes or characters of data
that can be stored in this column. If you try to enter a value that exceeds the maximum length
of the column, the Oracle database will return an error. However, if you enter a value that is
smaller than the column size, the Oracle database will store the actual value of the data and set

Introduction to SQL 2-29

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

the remaining space free. This implies that the Oracle database does not add the trailing blank
spaces to the data value and thus, let the remaining space free for other purpose. The maximum
width of the VARCHAR2 data type is 4000 bytes.

The syntax for declaring column with the VARCHAR2 data type is as follows:

column_name VARCHAR2(width)

In the above syntax, column_name is the name of the column having the VARCHAR2 data
type and width is an integer value ranging from 1 to 4000. If you do not specify the value of
width, Oracle will return an error.

Note
The VARCHAR2 data type is the successor of VARCHAR. Therefore, it is recommended that you
use VARCHAR2 as a variable-sized array of characters rather than VARCHAR.

NVARCHAR2
The NVARCHAR2 data type is used to store the unicode character data having variable-length
or multibyte character string. While creating the NVARCHAR2 column, you can specify the
maximum number of bytes or characters of data that can be stored in this column. The maximum
width of the NVARCHAR2 data type is 4000 bytes.

The syntax for declaring column with the NVARCHAR2 data type is as follows:

column_name NVARCHAR2(width)

In the above syntax, column_name is the name of the column having the NVARCHAR2 data
type and width is an integer value ranging from 1 to 4000. If you do not specify the value of
width, Oracle will throw an error.

Tip
Both NCHAR and NVARCHAR2 are Unicode data types which store Unicode characters. The
character set of NCHAR and NVARCHAR2 data types can be either AL16UTF16 or UTF8.
The character set AL16UTF16 or UTF8 can be specified while creating a database.

NUMBER Data Type
The NUMBER data type stores variable-length numeric data with a precision upto 40 digits,
and the scale has a range between –84 to 127. It can store the zero, positive numbers, or negative
fixed numbers with absolute values from 1.0 x 10-130 to 1.0 x 10126 digits as well as fixed and
floating point numbers. If you specify the value of an expression greater than 1.0 x 10126, the
Oracle database returns an error. The Oracle database provides three subtypes of the NUMBER
data type: Fixed-point, Floating-point, and Integer.

Fixed-point Number
To define the Fixed-point number data type, you have to specify the values of both precision
and scale.

2-30 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
The syntax for declaring column with the Fixed-point number data type is as follows:

Column_Name NUMBER(P,S)

In the above syntax, Column_Name is the name of the column having the NUMBER data type.
P is the precision or the total number of digits with precision up to 40 digits and S is the scale
or the number of digits on the right of the decimal point. The value of S can range from -84 to
127. The precision value denotes all digits on the left of the decimal point, whereas the scale
value denotes all digits to right of the decimal point.

Integer Numbers
An integer is a whole number with no digit on the right of the decimal point. You can define a
column of integer data type by omitting the scale value.

The syntax for declaring column with an integer number data type is as follows:

Column_Name NUMBER(P)

In the above syntax, Column_Name is the name of the column having the NUMBER data type
and P is the precision or the total number of digits with precision up to 40 digits.

Floating-point Number
The Floating-point numbers can have a decimal point anywhere between the first and the last
digits, or it can be a number without any decimal point as there is no restriction for the decimal
point. Scale is not applicable for this data type. To declare a column with this data type, omit
the precision and scale values.

The syntax for declaring column with the Floating-point number data type is as follows:

Column_Name NUMBER

In the above syntax, Column_Name is the name of the column having the NUMBER data
type. Oracle provides two numeric data types for floating-point numbers: BINARY_FLOAT
and BINARY_DOUBLE.

BINARY_FLOAT
The BINARY_FLOAT data type is a single-precision floating-point number data type and
it requires 4 bytes.

BINARY_DOUBLE
The BINARY_DOUBLE is a double-precision floating-point number data type and it
requires 9 bytes.

Note
BINARY-FLOAT is a 32-bit data type and BINARY-DOUBLE is a 64-bit data type.

Introduction to SQL 2-31

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Datetime and Interval
The Oracle datetime data types store date and time values. The datetime data types are DATE,
TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME
ZONE. The interval data types are INTERVAL YEAR TO MONTH and INTERVAL DAY TO
SECOND. The datetime and interval data types are discussed next.

DATE
The DATE data type is used to store date and time. Oracle stores the following information for
each date value: century, year, month, date, hour, minute, and second. You can represent the
date and time in both character and number data types. The character and numeric dates can
be converted into date value by using the TO_DATE function. This function will be discussed in
later chapters. The default date format is DD-MON-YY and the time format is HH:MI:SS using
the 12-hours clock, whereas the date format for ANSI is YYYY-MM-DD. The valid date range
is from January 1, 4712 BC to December 31, 9999 AD.

The syntax for declaring a column with the DATE data type is as follows:

Column_Name DATE

In the above syntax, Column_Name specifies the name of the column having the DATE data
type. If you specify a date value without the time component, the default time will be midnight
(00:00:00 or 12:00:00 for 24-hour or 12-hour clock time, respectively). If you specify a date
value without specifying the day, then the default date will be the first day of the current month.

TIMESTAMP
The TIMESTAMP data type stores all information that the DATE data type stores, including
the fractional part of seconds. It is an expansion of the DATE data type. It stores century, year,
month, day, hour, minute, second, and fractional seconds. This data type is useful for storing
precise time values.

The syntax for declaring a column with the TIMESTAMP data type is as follows:

Column_Name TIMESTAMP [(Fractional_Seconds_Precision)]

In the above syntax, Column_Name is the name of the column having the TIMESTAMP
data type. Fractional_Seconds_Precision is an optional value and it indicates the number of
digits that Oracle will store in the fractional part of the seconds datetime field. The value of
Fractional_Seconds_Precision can range from 0 to 9. If you do not specify this value, Oracle
will take its default value, which is 6.

TIMESTAMP WITH TIME ZONE
The TIMESTAMP WITH TIME ZONE data type is an alternative to the TIMESTAMP data
type. The value stored by this data type includes time zone offset. There are two ways to set time
zone: first by using the UTC offset, say ‘+10:0’, and the second is by using the name of region,
say ‘Australia/Sydney’. This data type is useful for collecting and evaluating date information
across geographic regions.

2-32 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
The syntax for declaring a column with the TIMESTAMP WITH TIME ZONE data type is as
follows:

Column_Name TIMESTAMP [(Fractional_Seconds_Precision)] WITH TIME ZONE

In the above syntax, Column_Name is the name of the column having the TIMESTAMP WITH
TIME ZONE data type. Fractional_Seconds_Precision is an optional value and is used to specify
the number of digits that Oracle can store in the fractional part of the seconds datetime field.
The value of Fractional_Seconds_Precision can range from 0 to 9. If you omit this value, it will
take the default value 6.

TIMESTAMP WITH LOCAL TIME ZONE
The TIMESTAMP WITH LOCAL TIME ZONE data type is another alternative to the
TIMESTAMP data type. It also includes a time zone offset in its value. Unlike the TIMESTAMP
WITH LOCAL TIME ZONE data type, the TIMESTAMP WITH LOCAL TIME ZONE data
type does not store the time zone offset as part of the column data. When a user retrieves the
data from TIMESTAMP WITH LOCAL TIME ZONE data type column, Oracle returns it in
the local time zone of the client’s system in a two-tier application.

The syntax for declaring the column having the data type TIMESTAMP WITH LOCAL TIME
ZONE is as follows:

Column_Name TIMESTAMP [(Fractional_Seconds_Precision)] WITH LOCAL
TIME ZONE

In the given syntax, Column_Name is a name of the column having the TIMESTAMP WITH
LOCAL TIME ZONE data type. Fractional_Seconds_Precision is optional and is used to
specify the number of digits that can be stored in the fractional part of the seconds datetime
field. The value of Fractional_Seconds_Precision can range from 0 to 9. If you omit this value,
it will take the default value 6.

Note
The time zone offset is the difference (in hours and minutes) between the local time and UTC
(Coordinated Universal Time, formerly Greenwich Mean Time).

INTERVAL YEAR TO MONTH
The INTERVAL YEAR TO MONTH data type is used to store the period of time that
represents year and month.

The syntax for declaring the column having the data type INTERVAL YEAR TO MONTH is
as follows:

Column_Name INTERVAL YEAR [(year_precision)] TO MONTH

In the above syntax, Column_Name is the name of the column having the INTERVAL YEAR
TO MONTH data type and year_precision is the number of digits in the YEAR datetime field.
The value of year_precision can range from 0 to 9 and its default value is 2.

Introduction to SQL 2-33

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

INTERVAL DAY TO SECOND
The INTERVAL DAY TO SECOND data type is used to store the period of time that represents
days, hours, minutes, and seconds with a fractional part.

The syntax for declaring the column having the data type INTERVAL DAY TO SECOND is
as follows:

INTERVAL DAY [(day_precision)] TO SECOND [(fractional_seconds_precision)]

In the above syntax, day_precision is the number of digits in the day datetime field. The value
of day_precision can range from 0 to 9. If you do not specify this value, Oracle will assign
the default value 2 for this field. fractional_seconds_precision is the number of digits in the
fractional part of the second datetime field. The value of fractional_seconds_precision can
range from 0 to 9. The default value of fractional_seconds_precision is 6.

LOB
LOB stands for Large Object. It is a data type and stores unstructured information upto 128
terabytes such as sound clips, video files, and so on. The LOB data types allow efficient, random,
and easy access to the data. The values stored in this data type are known as locators. These
locators store the locations of large objects. The location may be stored in-line (in the database)
or out-line (outside the database). The LOBs can be manipulated by using the DBMS_LOB
package and Oracle Call Interface (OCI). The LOBs can be external or internal depending
upon their locations with respect to the database.

The LOB data types available in Oracle database are BLOB, CLOB, NCLOB, and BFILE.

BLOB
BLOB stands for Binary Large Objects. This data type is used to store unstructured binary data
up to 8 terabytes in length. BLOB is stored in the database.

The syntax for declaring a column with the BLOB data type is as follows:

Column_Name BLOB

In the above syntax, Column_Name is the name of a column having the BLOB data type.

CLOB
CLOB stands for Character Large Objects and can store character data up to 8 terabytes in
length. CLOB is also stored in the database.

The syntax for declaring a column with the CLOB data type is as follows:

Column_Name CLOB

In the above syntax, Column_Name is the name of the column having the CLOB data type.

2-34 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
BFILE
BFILE stands for Binary FILE. It is a pointer (reference) to the external file. The files
referenced by BFILE exist in the file system and enables you to access the binary file that are
stored outside the Oracle database. The database only maintains a pointer to the file. The size
of the external file is limited only by the operating system because the data is stored outside
the database.

The syntax for declaring a column with the BFILE data type is as follows:

Column_Name BFILE

In the above syntax, Column_Name is the name of the column having the BFILE data type.

NCLOB
The NCLOB data type is used to store unicode data and it supports both fixed-width and
variable-width character sets. The NCLOB data type can store up to 8 terabytes of character
text data.

The syntax for declaring a column with the NCLOB data type is as follows:

Column_Name NCLOB

In the above syntax, Column_Name is the name of the column having the NCLOB data type.

Note
You cannot save the BLOB, CLOB, and NCLOB locators in a PL/SQL or Oracle Call Interface
(OCI) variable in one transaction and then use it in another transaction or session. Also, you cannot
specify the object size because the database automatically allocates space to store the LOB object.

Rowid Data Types
Each database table has the ROWID pseudocolumn. A pseudocolumn behaves like a table column
but does not actually get stored in the tables. Each ROWID represents the storage address of
a row. The ROWID is an internally generated and maintained binary value which indicates a
particular row of data in the table. It is called a pseudocolumn because an SQL statement inserts
it in the places where you would normally use a column. However, it is not a column that you
create for the table. Instead, RDBMS generates ROWID for each row when it is inserted into
the database. The information in ROWID provides the exact physical location of the row in the
database. You cannot change the value of a ROWID.

The Rowid data types available in Oracle database are ROWID and UROWID.

ROWID
The ROWID data type is used to store the address of rows in a table. The physical rowids store
the address of rows in ordinary table whereas the logical rowids store the address of rows in
indexed tables.

The syntax for declaring a column with the ROWID data type is as follows:

Introduction to SQL 2-35

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Column_Name ROWID

In the above syntax, Column_Name is the name of the column having ROWID data type.

UROWID
The UROWID (Universal ROWID) data type is used to store both the physical and the logical
address of each row in a table.

The syntax for declaring column with the UROWID data type is as follows:

Column_Name UROWID

In the above syntax, Column_Name is the name of the column having UROWID data type.

Any Data Types
The Any types are Oracle supplied data types that can contain data of any given data type along
with the description of the data type.

The Any types available in Oracle database are ANYTYPE, ANYDATA, and ANYDATASET.

ANYTYPE
The ANYTYPE type contains type description of any given data type.

ANYDATA
The ANYDATA type can be used as a data type of a table column and it contains data value
and description of any given data type. The data can be of any Oracle built-in data type or
user-defined types.

ANYDATASET
The ANYDATASET type contains a set of data values of any given data type along with the
description of the data type. The data can be of any Oracle built-in data type or user-defined types.

XML Data Types
The XML types are Oracle supplied data types and are used to store the XML (Extensible Markup
Language) documents, URIs references of XML documents, and URLs of web pages. The XML
data types can be used as data type of a table column as well as variables and parameters in
PL/SQL procedures.

The XML types available in Oracle database are XMLType, URI Data Types, and URIFactory
package.

XMLType
The XMLType is Oracle supplied data type and can be used as data type of table column. It stores
the XML content in the column which allows Oracle database to perform validations specific to
XML. Oracle database provides built-in functions for XMLType that can be used to operate on

2-36 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
XML. XMLType can also be used as variables, parameters, and you can also use them to return
values in PL/SQL stored procedures.

URIType
The URIType is Oracle supplied data type and is used to store the URI references in PL/SQL
variables and table columns. It is an object type and has three subtypes named as HTTPURIType,
XDBURIType, and DBURIType. The URIType can also store the data instance of its subtypes.

HTTPURIType
The HTTPURIType type can be used to store the http URLs of web pages.

XDBURIType
The XDBURIType type can be used to store the URI which references to XML document
stored in Oracle database.

DBURIType
The DBURIType type can be used to store the URI references of a table, set of rows or
columns in Oracle database.

URIFactory
The URIFactory is a package which contains methods that can be used to generate an
appropriate URI type for the supplied URL.

Spatial Data Types
Oracle database provides Spatial data types. The Spatial data types store the geometric description
of spatial objects. With the help of Spatial data types, the management of spatial data has become
easy for GIS and geo-imaging applications. Oracle database provides a set of functions and
procedures to easily retrieve, manipulate, manage, and analyse the spatial data.

The Spatial types available in Oracle database are SDO_GEOMETRY, SDO_TOPO_GEOMETRY,
and SDO_GEORASTER.

SDO_GEOMETRY
The SDO_GEOMETRY type can be used to store geometric description of spatial object. The
geometric description is stored in a single row and in a single column of SDO_GEOMETRY
type in a table. It is mandatory that a table having a column of type SDO_GEOMETRY must
have a primary key column.

The syntax for declaring a column with the SDO_GEOMETRY data type is as follows:

Column_Name SDO_GEOMETRY

In this syntax, Column_Name is the name of the column having the SDO_GEOMETRY data
type. The SDO_GEOMETRY type has the following definition:

Introduction to SQL 2-37

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

CREATE TYPE SDO_GEOMETRY AS OBJECT
(SDO_GTYPE NUMBER,
SDO_SRID NUMBER,
SDO_POINT SDO_POINT_TYPE,
SDO_ELEM_INFO SDO_ELEM_INFO_ARRAY,
SDO_ORDINATES SDO_ORDINATE_ARRAY);

The explanation of the definition is given below:

•	 SDO_GTYPE indicates the type of the geometry (point, line, polygon, …)
•	 SDO_SRID identifies the coordinate system
•	 SDO_POINT defines the coordinates for a point geometry
•	 SDO_ELEM_INFO gives information on how to interpret the coordinates
•	 SDO_ORDINATES is an array which stores the coordinate values that make up the

boundary of the geometry

SDO_TOPO_GEOMETRY
The SDO_TOPO_GEOMETRY type can be used to store information about geometric
description of spatial object using primitive elements such as nodes, edges, and faces. The
geometric description is stored in a single row, in a single column of SDO_TOPO_GEOMETRY
type in a table.

The syntax for declaring a column with the SDO_TOPO_GEOMETRY data type is as follows:

Column_Name SDO_TOPO_GEOMETRY

In the above syntax, Column_Name is the name of the column having the SDO_TOPO_GEOMETRY
data type. The SDO_TOPO_GEOMETRY type has the following definition:

CREATE TYPE SDO_TOPO_GEOMETRY AS OBJECT
(tg_type NUMBER,
tg_id NUMBER,
tg_layer_id NUMBER,
topology_id NUMBER);

SDO_GEORASTER
The SDO_GEORASTER type can be used to store a image or gridded raster data. The raster
data is stored in a single row and a single column of SDO_GEORASTER type in a table.

The syntax for declaring a column with the SDO_GEORASTER data type is as follows:

Column_Name SDO_GEORASTER

In the above syntax, Column_Name is the name of the column having the SDO_GEORASTER
data type. The SDO_GEORASTER type has the following definition:

2-38 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
CREATE TYPE SDO_GEORASTER AS OBJECT
(rasterType NUMBER,
spatialExtent SDO_GEOMETRY,
rasterDataTable VARCHAR2(32),
rasterID NUMBER,
metadata XMLType);

Note
The Spatial data types are available only if Oracle Spatial and Graph is installed.

CONSTRAINTS
Constraints are a set of predefined rules, which ensure that the valid data is stored in a table.
These predefined rules are applied on one or more columns in a table. When the table undergoes
any data action (creation, modification, or deletion), these rules are validated and an exception
is raised on any violation. Constraints are applied at the time of creation of a table or you can
add them later using the ALTER statement. Constraints can be disabled when not needed. The
constraints increase the accuracy and reliability of the data in a table. Following are the available
constraint types: NOT NULL, PRIMARY KEY, UNIQUE, CHECK, FOREIGN KEY, and
DEFAULT.

There are two levels of constraints: table level constraint and column level constraint.

The table level constraints restrict the values that a table can store. These constraints can
be imposed to one or more columns in a table. The table level constraints include the
following constraints: PRIMARY KEY, UNIQUE, FOREIGN KEY, and CHECK.

The column level constraints can be applied to a single column in a table and they do not specify
a column name except the CHECK constraint. They are imposed to the column that they follow.
As a result, they limit the values that can be placed in a specific column, irrespective of values
that exist in other columns of a table. The column level constraint can be one of the following:
CHECK, UNIQUE, NOT NULL, PRIMARY KEY, and FOREIGN KEY.

The syntax and behavior of the table level constraint and the column level constraint is similar
only with the following difference:

1. The syntax for table level constraints is separated from the column definitions by comma.

2. The table level constraints must follow the definition of the columns to which they are
referred.

3. The table level constraint can be defined for more than one column and SQL evaluates
the constraint based on the combination of values stored in all columns.

The basic structure of a constraint used in Oracle is as follows:

The keyword CONSTRAINT is followed by a unique constraint name and then by a constraint
definition. The constraint name is used to manipulate the constraint once a table has been
created. The syntax for declaring a constraint is as follows:

Introduction to SQL 2-39

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

CONSTRAINT [Constraint_Name] Constraint_Type

In the above syntax, Constraint_Type may be either a column level constraint or a table level
constraint.

Note
If you omit the name of the constraint, Oracle will assign an arbitrary name to it. This
constraint name is used to drop the constraint by using the ALTER statement, which will be
discussed later in this chapter.

The constraints used in Oracle are discussed below.

PRIMARY KEY Constraint
The PRIMARY KEY constraints ensure that the Null values are not entered in a column and
also the value entered is unique. Thus, these constraints avoid the duplication of records. A
primary key constraint can be defined in the CREATE TABLE and ALTER TABLE commands.
This constraint can be declared at both levels: within the column level and at the table level.

The syntax for declaring a PRIMARY KEY constraint at the column level is as follows:

CONSTRAINT Constraint_Name PRIMARY KEY

In the above syntax, CONSTRAINT and PRIMARY KEY are keywords and Constraint_Name
is the name of the constraint.

The syntax for declaring a PRIMARY KEY constraint at the table level is as follows:

CONSTRAINT Constraint_Name PRIMARY KEY (Column_Name)

In the above syntax, CONSTRAINT and PRIMARY KEY are keywords. Constraint_Name is
the name of the constraint and Column_Name is the name of the column for which you want
to declare the constraint.

You can also create a PRIMARY KEY constraint for more than one column. The syntax for
declaring the PRIMARY KEY for more than one column is as follows:

CONSTRAINT Constraint_Name PRIMARY KEY (Column_Name1,
Column_Name2, Column_Name3, Column_Name4 ...)

In the above syntax, CONSTRAINT and PRIMARY KEY are keywords and Constraint_Name is
the name of the constraint. Column_Name1, Column_Name2, Column_Name3, Column_Name4,
and so on are the names of the columns for which you want to declare the PRIMARY KEY
constraint.

Note
In Oracle, the PRIMARY KEY constraint cannot be declared for more than 32 columns.

2-40 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
FOREIGN KEY Constraint
The FOREIGN KEY constraint is the property that guarantees the dependency of data values
of one column of a table with a column of another table. A FOREIGN KEY constraint, also
known as referential integrity constraint, is declared for a column to ensure that the value in one
column is found in the column of another table with the PRIMARY KEY constraint. The table
containing the FOREIGN KEY constraint is referred to as the child table, whereas the table
containing the referenced (PRIMARY KEY) is referred to as the parent table. The FOREIGN
KEY reference will be created only when a table with the PRIMARY KEY column already exists.
The FOREIGN KEY constraint can be declared in two ways: within the column declaration and
at the end of the column declaration.

The syntax for using the FOREIGN KEY constraint within the column declaration is as follows:

CONSTRAINT Constraint_Name REFERENCE Primary_Key_Table_Name
(Primary_Key_Column_Name)

In the above syntax, CONSTRAINT and REFERENCE are keywords, whereas Constraint_Name
is the name of the constraint and Primary_Key_Table_Name is the name of the table that
contains the referenced column. The referenced column Primary_Key_Column_Name is the
primary key of the table Primary_Key_Table_Name.

The syntax for declaring the FOREIGN KEY constraint at the end of the column declaration:

CONSTRAINT Constraint_Name FOREIGN KEY (Column_Name) REFERENCE
Primary_Key_Table_Name (Primary_Key_Column_Name)

In the above syntax, CONSTRAINT, FOREIGN KEY, and REFERENCE are keywords, whereas
Column_Name is the name of the column that is declared as the foreign key. Constraint_Name
is the name of the constraint and Primary_Key_Table_Name is the name of the table that
contains the referencing column. The referencing column is the primary key of the table
Primary_Key_Table_Name. And, Primary_Key_Column_Name is the name of the primary key
column of the table Primary_Key_Table_Name.

Note
If you declare the FOREIGN KEY constraint at the column level, the column name is not required.
Also, in the FOREIGN KEY constraint, you cannot use the keyword FOREIGN KEY.

NOT NULL Constraint
A column in a table can be declared with the NOT NULL constraint. On declaring this constraint,
you cannot insert Null value in the column. You can add this constraint while creating the table
by using the CREATE TABLE command. You can also add this constraint after creating the table
by using the ALTER command. The ALTER command will be discussed later in the chapter.

The syntax for declaring the NOT NULL constraint within the column declaration is as follows:

Column_Name Datatype CONSTRAINT Constraint_Name NOT NULL

Introduction to SQL 2-41

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

In the above syntax, CONSTRAINT is a keyword. Column_Name and Constraint_Name are
the name of the column and constraint, respectively.

For example:

First_Name VARCHAR2(30) CONSTRAINT F_Name NOT NULL

In the above example, the column First_Name is declared with the NOT NULL constraint
named F_Name. The F_Name constraint ensures that you cannot insert a Null value in the
column First_Name.

CHECK Constraint
The CHECK constraint ensures that all values inserted into the column satisfy the specified
condition. This constraint checks data against the expression defined in the INSERT and
UPDATE statements. The CHECK constraint can be declared at the column level.

The syntax for declaring the CHECK constraint within the column declaration is as follows:

Column_name Datatype CONSTRAINT Constraint_Name CHECK(Col_Condition)

In the above syntax, CONSTRAINT and CHECK are keywords. Column_Name and
Constraint_Name are the name of the column and constraint, respectively and Col_Condition
is the rule or the condition for entering values in the column.

For example:

Commission NUMBER Check_Column_Value CHECK(Commission>500)

In the above example, the Commission column is declared with the CHECK constraint
Check_Column_Value, which ensures that the data values entered in the Commission column
are greater than 500.

UNIQUE Key Constraint
The UNIQUE key constraint is used to prevent the duplication of data values within the rows
of a specified column or a set of columns in a table but it allows a null value. This constraint
can also be added to the existing columns. The UNIQUE key constraint can be declared both
at the column level and the table level.

The syntax for declaring the UNIQUE key constraint at the column level is as follows:

Column_name Datatype CONSTRAINT Constraint_Name UNIQUE

In the above syntax, CONSTRAINT and UNIQUE are keywords. Column_Name is the name
of the column and Constraint_Name is the name of the constraint.

2-42 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
For example:

Dept_Name VARCHAR2(50) CONSTRAINT Unique_Dept_Name UNIQUE

In the above example, the column Dept_Name is defined with the UNIQUE key constraint
Unique_Dept_Name, which stores the department name of a company. The constraint
Unique_Dept_Name ensures that you cannot enter the duplicate data in the column Dept_Name.

The syntax for declaring the UNIQUE key constraint at the table level is as follows:

CONSTRAINT Constraint_Name UNIQUE(Column_Name)

In the above syntax, Constraint_Name is the name of the constraint and Column_Name is the
name of the column for which the UNIQUE key constraint is declared. The declaration of the
UNIQUE key constraint at the table level is made at the end of the declaration of columns.

For example:

CONSTRAINT Unique_Dept_Name UNIQUE (Dept_Name)

In the above example, the constraint Unique_Dept_Name is declared for the column Dept_Name.
This constraint ensures that you cannot enter the duplicate data values in the column Dept_Name.

DEFAULT Constraint
The DEFAULT constraint is used to set the default value for a column. This constraint ensures
that a default value is set automatically by Oracle for a column if a value is not provided for
the column in the INSERT statement. The DEFAULT constraints are declared at the column
level declaration.

The syntax for declaring the DEFAULT constraint is as follows:

DEFAULT ‘default_value’

In the above syntax, DEFAULT is a keyword and default_value is the value set as the default
value for a column.
For example:

Country VARCHAR2 (50) DEFAULT ‘USA’

In the above example, the column Country is declared with the DEFAULT constraint. If a user
does not supply any value for this column then Oracle will insert a default value that is ‘USA’ in
the above example. But, if a user enters a data value, the default value will be replaced by the
data value inserted.

CREATING A TABLE
A table is the basic unit of data storage in the Oracle database. Database holds data in the tabular
form, which is in rows and columns. A table such as EMPLOYEES can contain various columns

Introduction to SQL 2-43

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

such as Employee_Id, First_Name, Last_Name, and so on. Each column has a width and data
types, such as VARCHAR2, DATE, NUMBER, and so on. The width can be pre-determined
by the data type, as in case of the data type DATE. But, if a column has a NUMBER data type,
you can define precision and scale instead of width.

A row is a set of columns corresponding to a single record. A table can contain number of such
records. For each column, you can specify rules, called constraints. For example, the NOT
NULL constraint ensures that each column of a row contains some data values. The constraints
maintain the integrity of data in a database.

Once a table has been created with columns and rows, you can retrieve, delete, or update data
using the SQL statements. This will be discussed in later chapters. While creating a table, the
naming convention for tables and columns should be properly followed. The naming conventions
used while creating tables and columns are as follows:

1. The table and column names can be up to 30 characters long.

2. The table and column names must begin with an alphabet.

3. Names cannot contain quotes.

4. Names are not case-sensitive.

5. Names can contain characters a to z, 0 to 9, _, $, and #.

6. The reserve words used in Oracle cannot be used as names of columns or tables.

The syntax for creating a table in Oracle is as follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Datatype (width),
Field_Name2 Field_Datatype (width),
Field_Name3 Field_Datatype (width),
Field_Name4 Field_Datatype (width),
Field_Name5 Field_Datatype (width),
.......
.......
.......
);

In the above syntax, CREATE and TABLE are keywords and Table_Name is the name of the
table to be created. Field_Name1, Field_Name2, Field_Name3, and Field_Name4 are the
names of columns. Field_Datatype represents the data type of the column and width represents
the length of the column.

2-44 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
For example:

To create a table Student containing student data such as roll number, name, date of birth, and
so on, you need to follow the steps given below:

1. Enter the CREATE TABLE command at the SQL prompt, as shown Figure 2-14.

Figure 2-14 The Student table created using the CREATE TABLE command

Note
You are recommended not to enter line numbers in SQL Plus window.

2. Enter ; (semi colon) at the end of the last line. It marks the end of the SQL command.

3. To execute command lines, press ENTER. If there is no error in the command lines, Oracle
will return a message, Table created, which confirms that the table has been created.

4. To check whether the Student table has been created, enter the following command in the
SQL Plus window:

 SQL>DESC Student;

5. After entering the command in the SQL Plus window, press ENTER; the output will be
displayed immediately after this command line, refer to Figure 2-15.

Figure 2-15 The information about the Student table displayed using the DESC command

Introduction to SQL 2-45

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Creating a Table with the Primary Key Constraint
You can create a table with the primary key constraint in two ways: by declaring the column with
the primary key constraint at the column level and by declaring constraint at the table level.

The syntax for creating a table with the primary key constraint declared at the column level is
as follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Datatype (width) CONSTRAINT Constraint_Name PRIMARY
KEY,
Field_Name2 Field_Datatype (width),
Field_Name3 Field_Datatype (width),
.......
.......
)

In the above syntax, CREATE TABLE, CONSTRAINT, and PRIMARY KEY are keywords;
Table_Name is the name of the table to be created; Field_Name1, Field_Name2, and
Field_Name3 are names of the columns. Field_Datatype is the data type of specific columns and
Constraint_Name is the name of the primary key constraint. Here, the primary key constraint
ensures that the column value is not Null and the values in that column are unique.

For example:

To create a table Student containing the student data such as roll number, name, and date of
birth with roll number as its primary key declared at column level, you need to follow the steps
given below:

1. In the SQL Plus window, enter the CREATE TABLE command at the SQL prompt, as
shown in Figure 2-16, to create Student table with PRIMARY KEY constraint declared at
column level.

Note
You need to drop the Student table before creating it again using the DROP TABLE Student
command.

Figure 2-16 Creating a table with the primary key constraint declared at the column level

2-46 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
2. To execute command lines, press ENTER. If there is no error in the command lines, Oracle

will return the message, Table created, which confirms that the table has been created.

The syntax for creating a table with the PRIMARY KEY constraint declared at the table level
is as follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Datatype (width)
Field_Name2 Field_Datatype (width),
Field_Name3 Field_Datatype (width),
.......,
.......,
CONSTRAINT Constraint_Name PRIMARY KEY(Field_Name)
)

In the above syntax, CREATE TABLE, CONSTRAINT, and PRIMARY KEY are keywords
and Table_Name is the name of the table to be created. Field_Name1, Field_Name2, and
Field_Name3 are names of columns; Field_Datatype is the data type of the specific column;
Constraint_Name is the name of the PRIMARY KEY constraint; and Field_Name is the name
of the column or field declared as the PRIMARY KEY.

For example:

To create a table Student containing the student data such as roll number, name, and date of
birth with roll number as its primary key declared at table level, you need to follow the steps
given below:

1. In SQL Plus window, enter the CREATE TABLE command at the SQL prompt, as shown
in Figure 2-17, to create Student table with primary key constraint declared at table level.

Note
You need to drop the Student table before creating it again using the DROP TABLE Student
command.

Figure 2-17 The CREATE TABLE command with the PRIMARY KEY constraint
declared at the table level

Introduction to SQL 2-47

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

2. To execute command lines, press ENTER. If there is no error in the command lines, Oracle
will return the message, Table created, which confirms that the table has been created.

The following CREATE TABLE command will create a table with the PRIMARY KEY constraint
declared for more than one field:

CREATE TABLE supplier
(
Supplier_ID NUMERIC(10) NOTNULL,
Supplier_Name VARCHAR2(50) NOTNULL,
Contact_No VARCHAR2(20),
CONSTRAINT Supplier_PK PRIMARY KEY (Supplier_ID, Contact_No)
);

Creating a Table with the FOREIGN KEY Constraint
You can create a table with the FOREIGN KEY constraint in two ways: by declaring the
column with FOREIGN KEY constraint at the column level and by declaring constraints at
the table level.

The syntax for creating a table with the FOREIGN KEY constraint declared at the column
level is as follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Datatype (width) CONSTRAINT Constraint_Name
REFERENCE Primary_Key_Table_Name (Primary_Key_Column_Name),
Field_Name2 Field_Datatype (width),
Field_Name3 Field_Datatype (width),
.......
.......
);

In the above syntax, CREATE TABLE, CONSTRAINT, and REFERENCE are keywords
and Table_Name is the name of the table to be created. Field_Name1, Field_Name2, and
Field_Name3 are the names of columns; Field_Datatype is the data type of specific column;
Constraint_Name is the name of the foreign key constraint; Primary_Key_Table_Name is the
name of the parent table having primary key column; and Primary_Key_Column_Name is the
name of the primary key column of the Primary_Key_Table_Name table.

The syntax for creating a table with the FOREIGN KEY constraint declared at the table level
is as follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Datatype (width),
Field_Name2 Field_Datatype (width),
Field_Name3 Field_Datatype (width),

2-48 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
Field_Name3 Field_Datatype (width),
.......
.......
CONSTRAINT Constraint_Name FOREIGN KEY (Column_Name) REFERENCE
 Primary_Key_Table_Name (Primary_Key_Column_Name)
);

In the above syntax, CREATE TABLE, CONSTRAINT, and REFERENCE are keywords
and Table_Name is the name of the table to be created. Field_Name1, Field_Name2,
and Field_Name3 are the names of columns; Field_Datatype is the data type of
specific columns; Constraint_Name is the name of the FOREIGN KEY constraint;
Primary_Key_Table_Name is the name of the parent table having the primary key
column; and Primary_Key_Column_Name is the name of the primary key column of the
Primary_Key_Table_Name table.

For example:

To create a table that contains customer’s address with reference to their dealers, you need to
follow the steps given below.

1. Enter the CREATE TABLE command at SQL prompt, as shown in Figure 2-18, to create
the Dealer table.

Figure 2-18 The CREATE TABLE command to create the Dealer table

2. To execute command lines, press ENTER. If there is no error in the command lines, the
Oracle will return a message Table created which confirms that the table has been created.

3. Now, enter the CREATE TABLE command at SQL prompt, as shown in Figures 2-19 and
2-20 and press ENTER to create the Customer table.

Introduction to SQL 2-49

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 2-19 The CREATE TABLE command with the FOREIGN KEY constraint
declared at the table level

Figure 2-20 The CREATE TABLE command with the FOREIGN KEY constraint
declared at the column level

Creating a Table with the NOT NULL Constraint
You can create a table with the NOT NULL constraint by declaring it at the column level.

The syntax for creating the table with the NOT NULL constraint is as follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Type (width) Constraint Constraint_Name NOT NULL,
Field_Name2 Field_Type (width),
Field_Name3 Field_Type (width),
Field_Name4 Field_Type (width),
Field_Name5 Field_Type (width),

2-50 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
(Col_Condition)
...........
............
);

In the above syntax, Field_Name1, Field_Name2, Field_Name3, Field_Name4, and
Field_Name5 are the names of columns; Field_Type is the data type of columns; width is the
length of columns; and Constraint_Name is the name of the constraint declared for the column.

For example:

To create a table that contains customer’s address with the NOT NULL constraint applied on
customer number, you need to follow the steps given below:

1. Enter the CREATE TABLE command at SQL prompt, as shown in Figure 2-21.

Figure 2-21 The CREATE TABLE command with the NOT NULL constraint

2. To execute command lines, press ENTER.

In the above example, the NOT NULL constraint Cust_NotNull ensures that the Null values
should not be allowed to the CUST_NO column.

Note
You need to drop the Customer table before creating it again using the DROP TABLE Customer
command.

Creating a Table with the DEFAULT Constraint
You can create a table with the DEFAULT constraint by declaring the column with DEFAULT
constraint at the column level.

The syntax for creating the table with DEFAULT constraint is as follows:

Introduction to SQL 2-51

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

CREATE TABLE Table_Name
(
Field_Name1 Field_Type (width),
Field_Name2 Field_Type (width) CONSTRAINT Constraint_Name Default
‘default_value’,
Field_Name3 Field_Type (width),
Field_Name4 Field_Type (width),
Field_Name5 Field_Type (width),
............
............
);

In the above syntax, Field_Name1, Field_Name2, Field_Name3, Field_Name4, and
Field_Name5 are the name of the columns; Field_Type is the data type of the columns; width
is the length of columns; and Constraint_Name is the name of the constraint declared for the
column.

For example:

To create a table to store customer’s address with California as the default value for the state,
you need to follow the steps given below.

1. Enter the CREATE TABLE command at the SQL prompt, as shown in Figure 2-22.

Figure 2-22 The CREATE TABLE command with the DEFAULT constraint

2. To execute command lines, press ENTER. It creates the Customer table with California as
default state for the column State.

Creating a Table with the UNIQUE and CHECK Constraints
You can create a table with the UNIQUE and CHECK constraints by declaring the column with
the UNIQUE and CHECK constraints at the column level.

2-52 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
The syntax for creating the table with the UNIQUE and CHECK constraints is as follows:

CREATE TABLE Table_Name
(
Field_Name1 Field_Type (width),
Field_Name2 Field_Type (width),
Field_Name3 Field_Type (width),
Field_Name4 Field_Type (width) Constraint Constraint_Name CHECK
(Col_Condition)
............
............
);

In the above syntax, Field_Name1, Field_Name2, Field_Name3, and Field_Name4 are the
names of columns; Field_Type is the data type of columns; width is the length of columns; and
Constraint_Name is the name of the constraint declared for the column.

For example:

CREATE TABLE Customer
(
CUST_NO NUMBER (5) CONSTRAINT Cust_NotNull NOT NULL,
FIRST_NAME NVARCHAR2 (30) CONSTRAINT Unique_FName UNIQUE,
LAST_NAME NVARCHAR2 (30),
CUST_ADDRESS NVARCHAR2 (50),
CITY NVARCHAR2 (30),
STATE NVARCHAR2 (30) DEFAULT ‘California’,
ZIP NVARCHAR2 (10),
BIRTH_DATE DATE,
STATUS VARCHAR2 (1) CONSTRAINT Check_Status CHECK(STATUS
IN(‘V’, ‘I’,‘A’)),
Dealer_Id NUMBER(4) CONSTRAINT Dealer_Cust REFERENCES Dealer
(Dealer_Id),
);

In the above example, the NOT NULL constraint Cust_NotNull ensures that the value
for the specified column CUST_NO does not allow Null values. Moreover, the UNIQUE
constraint Unique_FName does not allow duplicate values in the rows of the column
FIRST_NAME. If you do not enter data values for the column STATE, it will take the default
value because of the DEFAULT constraint. The CHECK constraint Check_Status ensures that
the data values for the column STATUS should be ‘V’, ‘I’ or ‘A’. If you enter a value other than
‘V’, ‘I’ or ‘A’, then Oracle will throw an error.

Creating a Table having Spatial Column Data Types
You can create a table having spatial column data type, SDO_GEOMETRY ,
SDO_TOPO_GEOMETRY, or SDO_GEORASTER.

Introduction to SQL 2-53

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

For example:

To create a table to store customer’s details with the location, you need to enter the CREATE
TABLE command at SQL prompt, as shown in Figure 2-23.

Figure 2-23 Creating a table having Spatial data type SDO_GEOMETRY

Note
You need to drop the Customer table before creating it again using the DROP TABLE Customer
command.

Creating a Table from an Existing Table
You can also create a table from an existing table by copying the columns of an existing table.

The syntax for copying all columns from an existing table is as follows:

CREATE TABLE new_table
AS (SELECT * FROM existing_table);

In the above syntax, new_table is the name of the table to be created from the existing table
existing_table.

For example:

CREATE TABLE NewCustomer
AS (SELECT * FROM Customer);

The above SQL statement will create a new table called NewCustomer. This new table will
include all columns of the Customer table. If the Customer table has records, the new table
NewCustomer will also contain the records selected by the SELECT statement.

2-54 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
The syntax for copying the selected columns of an existing table is as follows:

CREATE TABLE new_table
AS (SELECT column1, column2, ... column_n FROM existing_table);

In the above syntax, new_table is the name of the new table to be created; existing_table is the
name of the existing table; and column1, column2, ... column_n represent the column names.

For example:

CREATE TABLE NewCustomer
AS (SELECT ID, Address, City, State, Country FROM Customer);

The above SQL statement will create a new table called NewCustomer. But, the new table will
only include the specified columns of the Customer table.

Again, if the Customer table has records, the new table NewCustomer will also contain the
records selected by the SELECT statement.

You can copy the selected columns from the multiple tables, by using the following syntax:

CREATE TABLE new_table
AS (SELECT column_1, column2, ... column_n
FROM old_table_1, old_table_2, ... old_table_n);

For example:

CREATE TABLE Emp_Dept
AS (SELECT Employees.Employee_Id, Employees.First_name, Employees.
Salary, Employees.JOB_ID, Departments.Department_Id, Departments.
Department_Name, Departments.Location_Id FROM Employees, Departments
WHERE Employees.Department_Id = Departments.Department_Id AND
Departments.Department_Id=100);

The above SQL statement will create a new table, called Emp_Dept, based on the columns from
both the Employees and Departments tables.

You can also copy the structure of an existing table by using the following syntax:

CREATE TABLE new_table
AS (SELECT * FROM old_table
WHERE 1=2);

For example:

CREATE TABLE Emp
AS (SELECT * FROM Employees
WHERE 1=2);

Introduction to SQL 2-55

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The above SQL statement will create a new table, called Emp. This table will contain all columns
of the table EMPLOYEES, except the data rows.

You can copy the selected columns from an existing table, excluding the data, by using the
following syntax:

CREATE TABLE new_table
AS (SELECT column_1, column2, ... column_n FROM existing_table
WHERE 1=2);

For example:

CREATE TABLE NewCust
AS (SELECT ID, Address, City, State, Country FROM Customer
WHERE 1=2);

The above SQL statement will create a new table, called NewCust. This new table will include only
the specified columns of the table Customer, except the data rows.

MODIFYING AND DELETING A DATABASE TABLE
You can modify the structure of an existing database table by using the ALTER command. This
command is used to add new columns, modify existing columns, change the width of a data
type, and add or drop integrity constraints. You can also delete an existing table by using the
DELETE command.

In this section, you will learn how to delete and rename an existing table, add or delete columns
from it, and modify its definition and constraints.

Deleting and Renaming Existing Tables
You can use the DROP TABLE command to delete or remove the database tables. The syntax
for using the DROP TABLE command is as follows:

DROP TABLE Table_Name;

In the above syntax, DROP and TABLE are keywords and Table_Name is the name of the table
to be deleted or removed from the database.

If any column of the table Table_Name has a reference in another table, the DROP TABLE
command cannot delete or remove the table Table_Name from the database.

To drop a table that has a reference in another table, you can use the following two methods:

The first method is to delete or remove all tables that have foreign key references with other tables.

The second method is that you have to drop all references or foreign key constraints that refer
to other table. To avoid such a situation, Oracle provides the DROP TABLE command with the

2-56 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
CASCADE CONSTRAINTS option. The CASCADE CONSTRAINTS option is used to delete
the table that has the foreign key constraint references. The syntax for using the CASCADE
CONSTRAINTS option with the DELETE statement is as follows:

DROP TABLE Table_Name CASCADE CONSTRAINTS;

In the above syntax, DROP, TABLE, CASCADE, and CONSTRAINTS are keywords and
Table_Name is the name of the table to be deleted or removed from the database.

For example:

DROP TABLE Dealer;

After executing the above statement, Oracle will throw an error because of its foreign key reference
with the Customer table. Therefore, to remove the table Dealer, you need to use the DROP
TABLE command with the CASCADE CONSTRAINTS option, as given below:

DROP TABLE Dealer CASCADE CONSTRAINTS;

Now, the table will be deleted.

The RENAME command is used to rename an existing database table. The syntax for using the
RENAME command is as follows:

RENAME Old_Table_Name TO New_Table_Name;

In the above syntax, RENAME and TO are keywords; Old_Table_Name is the name of the
table to be renamed; and New_Table_Name is the new name for the Old_Table_Name table.

For example:

To rename a table Emp to Employee, you need to follow the steps given below:

1. To rename the Emp table, enter the following command at the SQL prompt.

 RENAME Emp TO Employee;

2. Press ENTER to execute the above statement. After executing the statement, Oracle
will return a message, Table renamed, which confirms that the table name Emp is replaced
with Employee.

Adding and Modifying Existing Columns
You can add new columns to the existing table by using the ALTER TABLE command with
the ADD option. The syntax for using the ALTER TABLE command with the ADD option is
as follows:

ALTER TABLE Table_Name ADD(Column_Name Column_Type Constraints);

Introduction to SQL 2-57

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

In the above syntax, Table_Name is the name of an existing table to which you want to add
the new column; Column_Name is name of the new column; Column_Type is the data type
of the new column Column_Name; and Constraints is any constraint that you want to set for
the new column.

For example:

To add a new column STATUS to the Customer table, you need to follow the steps given below:

1. Enter the ALTER TABLE command at SQL prompt, as shown in Figure 2-24, to add a new
column in the table Customer.

Figure 2-24 The ALTER TABLE command with the ADD option

2. Press ENTER to execute the above statement. On executing the statement, Oracle will return a
message, Table altered, which confirms that the new column STATUS has been added to
the table Customer.

You can also modify a column of an existing table by using the ALTER TABLE command with
the MODIFY option. The syntax for using the ALTER TABLE command with the MODIFY
option is as follows:

ALTER TABLE Table_Name MODIFY(Column_Name New_Data_Definition);

In the above syntax, Table_Name is the name of the existing table to be modified; Column_Name
is the name of the column of the existing table that you want to modify; and New_Data_Definition
is the new data type definition of the existing column.

For example:

To change the width of the column Cust_Address of the table Customer, you need to follow
the steps given below:

1. In SQL Plus window, enter the ALTER TABLE command, as shown in Figure 2-25, to
modify the column Cust_Address of the table Customer.

2-58 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om Figure 2-25 The ALTER TABLE command with the MODIFY option

2. Press ENTER to execute the statement. After executing the statements, Oracle will
return a message Table altered, refer to Figure 2-25, which confirms that the column
CUST_ADDRESS of the table Customer has been modified.

Deleting and Renaming the Columns of an Existing Table
You can delete an existing column from the database table by using the ALTER TABLE command
with the DROP option. The syntax for using the ALTER TABLE command with the DROP
option is as follows:

ALTER TABLE Table_Name DROP COLUMN Column_Name;

In the above syntax, Table_Name is the name of the existing table from which you want to
delete or remove a column and Column_Name specifies the name of the column that you want
to delete or remove from the table Table_Name.

For example:

To delete the column ZIP from the table Customer, you need to follow the steps given below:

1. Enter the following command at SQL prompt to delete the column from the table:

 ALTER TABLE Customer DROP COLUMN ZIP;

2. Press ENTER to execute the above statement. After executing the statement, Oracle
will return a message, Table altered, which confirms that the column ZIP has been deleted
from the table Customer.

You can also rename an existing column in the table by using the ALTER TABLE command
with the RENAME option.

The syntax for using the ALTER TABLE command with the RENAME option is as follows:

ALTER TABLE Table_Name RENAME COLUMN Old_Column_Name TO
New_Column_Name;

In the above syntax, Table_Name is the name of the table in which you want to rename a
column. Here, Old_Column_Name is the name of column that you want to rename and
New_Column_Name is the new name of the Old_Column_Name column.

Introduction to SQL 2-59

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

For example:

To rename the column Cust_Address to Cust_Add in the table Customer, you need to follow
the steps given below:

1. Enter the following command at SQL prompt to rename the column in the table Customer:

 ALTER TABLE Customer RENAME COLUMN Cust_Address TO Cust_Add;

2. Press ENTER to execute the above statement; Oracle will return a message, Table altered,
which confirms that the table Customer has been altered.

3. To check whether the name of the column has been changed, enter the following statement at
SQL prompt as shown in Figure 2-26.

 SQL>DESC Customer;

On doing so, the description of the Customer table will be displayed as shown in Figure 2-26
with the name of column Cust_Address modified.

Figure 2-26 Description of the Customer table

Adding and Deleting Constraints
You can remove an existing constraint from a database table by using the ALTER TABLE
command with the DROP option.

The syntax for using the ALTER TABLE command with the DROP option is as follows:

ALTER TABLE Table_Name DROP CONSTRAINT Constraint_Name;

In the above syntax, Table_Name is the name of an existing table from which you want to remove
the constraint and Constraint_Name is the name of the constraint that you want to remove.

2-60 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
For example:

To delete the constraint CHECK named Check_Status from the table Customer, you need to
follow the steps given below:

1. Enter the following command in SQL Plus window to delete the constraint Check_Status
from the table Customer:

 ALTER TABLE Customer DROP CONSTRAINT Check_Status;

2. Press ENTER to execute the above statement; Oracle will return a message, Table altered,
which confirms that the Check_Status constraint has been removed from the table Customer.

You can also add a constraint to the existing column of the table by using the ALTER
command with the ADD option. The syntax for using the ALTER command with the ADD
option is as follows:

 ALTER TABLE Table_Name ADD CONSTRAINT Constraint_Name
 Constraint_declaration;

In the above syntax, Table_Name is the name of the table to which you want to add a constraint;
Constraint_Name is the name of the new constraint; and Constraint_Declaration specifies the
constraint type.

For example:

To add the primary key constraint to the table Customer, enter the following statement at SQL
prompt:

ALTER TABLE Customer ADD CONSTRAINT Cust_PrimaryKey PRIMARY
KEY (Cust_No);

To check whether the constraint has been added, enter the following statement at SQL prompt:

SQL>DESC Customer;

On doing so, the description of the table Customer will be displayed with the primary key
constraint added to it.

Similarly, to add the foreign key constraint to the table Customer, you need to enter the
following statements at SQL prompt:

ALTER TABLE Customer ADD CONSTRAINT Foreign_key
FOREIGN KEY (Dealer_Id) REFERENCES Dealer ON DELETE CASCADE;

Note
In one of the previous examples, you have deleted the Dealer table. So, before executing the above
statement, you need to recreate the Dealer table.

Introduction to SQL 2-61

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Enabling and Disabling Constraints
You can enable or disable the constraints by using the ALTER command with the ENABLE
and DISABLE option. The syntax for using the ALTER command with the ENABLE option
is as follows:

ALTER TABLE Table_Name ENABLE CONSTRAINT Constraint_Name;

In the above syntax, Table_Name is the name of the table on which you want to enable the
constraints and Constraint_Name is the name of the constraint to be enabled.

The syntax for using the ALTER command with the DISABLE option is as follows:

ALTER TABLE Table_Name DISABLE CONSTRAINT Constraint_Name;

In the above syntax, Table_Name is the name of the table on which you want to disable the
constraints and Constraint_Name is the name of the constraint to be disabled.

For example:

To enable the primary key constraint of the table Customer, enter the following statements at
SQL prompt:

ALTER TABLE Customer ENABLE CONSTRAINT Cust_PrimaryKey;

After the execution of the above statement, the Cust_PrimaryKey constraint will be enabled.
Similarly, enter the following statement in SQL *Plus to disable the primary key constraint:

ALTER TABLE Customer DISABLE CONSTRAINT Cust_PrimaryKey;

After the execution of the above statement, the Cust_PrimaryKey constraint will be disabled.

The following example will illustrate how to create a table and then add and drop columns and
constraints in it.

Example 3
Write a query to create a table Employee and use the ALTER, MODIFY, and DROP commands
to add, modify, and drop columns and constraints in it.

The following steps are required to create the table and then alter, modify, and drop constraints
and columns in it.

1. Enter the CREATE TABLE command at SQL prompt, as shown in Figure 2-27, to create
the Employee table.

2. Now, you can add the column Address in the Employee table by entering the command at
SQL prompt, as shown in Figure 2-28.

2-62 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 2-27 Creating the table Employee

Figure 2-28 Adding new column to the Employee table

3. Now, you can modify the width of the column Ename in the Employee table by entering
the command at SQL prompt, as shown in Figure 2-29.

Figure 2-29 Modifying the Ename column of the table Employee

4. You can also rename the column Address to Emp_Address of the Employee table by entering
the command at SQL prompt, as shown in Figure 2-30.

5. After creating the table Employee, you can add the primary key constraint to the column
Empno. To do so, enter the command at SQL prompt, as shown in Figure 2-31.

Introduction to SQL 2-63

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

 Figure 2-30 Renaming the column Address to Emp_Address in the Employee table

Figure 2-31 Adding the primary key constraint to the Employee table

6. Now, you can disable or enable constraints on the table Employee by entering the command
at SQL prompt, as shown in Figure 2-32.

Figure 2-32 Disabling and enabling the constraint Prmy_Empno

ORACLE SQL DEVELOPER
Oracle SQL Developer is an Integrated Development Environment (IDE) and GUI tool to access
and work on Oracle database. It helps users and administrators to do the database jobs easily.
It enhances productivity and simplifies database development tasks. Oracle SQL Developer
provides an editor for working with SQL, PL/SQL, Stored Procedures, and XML. With the help
of this tool, you can access the database objects, run SQL statements, edit and debug PL/SQL
statements, generate reports, export the data to desired format (Excel, XML, HTML, PDF, and
so on), and many more.

Loading Oracle SQL Developer
The following steps are required to start Oracle SQL Developer:

2-64 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
1. Choose Start > All Programs > Oracle-OraDB12Home1 > Application Development >

SQL Developer from the taskbar; the Oracle SQL Developer : Start Page will be displayed,
as shown in Figure 2-33.

Figure 2-33 The Oracle SQL Developer : Start Page

2. In the Connections panel, right-click on Connections; a flyout will be displayed, as shown
in Figure 2-34.

Figure 2-34 The Connections panel

Introduction to SQL 2-65

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

3. Click on the New Connections option; the New / Select Database Connection dialog box
will be displayed, as shown in Figure 2-35.

Figure 2-35 The New / Select Database Connection dialog box

4. In this dialog box, enter the desired connection name in the Connection Name edit box.
Now, enter the user name and password of HR database in the Username and Password
edit boxes respectively. If you want to save the password, select the Save Password check box.
In the Oracle tab of the New / Select Database Connection dialog box, select the Service
name option and enter the service name of the Pluggable database which is automatically
created while installing the Oracle 12c.

5. Now, choose the Test button to test the connection, if connection details are correct it will
display Status as Success, as shown in Figure 2-36.

Figure 2-36 The New / Select Database Connection dialog box showing the connection status

2-66 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
6. If the connection details are correct, choose the Save button to save the connection; newly

created connection will be displayed in the Connections panel, as shown in Figure 2-37.

Figure 2-37 The Connections panel with new connection

7. Now, choose the Connect button to connect the HR database; SQL Worksheet will be
displayed in the right panel, as shown in the Figure 2-38.

Figure 2-38 The SQL Worksheet

8. Now, expand the hr_cnn connection from Connections panel; all the objects of HR database
will be displayed, as shown in Figure 2-39.

Introduction to SQL 2-67

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 2-39 Objects of the HR database

Creating a Table Using Oracle SQL Developer
The following steps are required to create a table using Oracle SQL Developer:

1. Right-click on Tables and choose New Table; the Create Table dialog box will be displayed,
as shown Figure 2-40.

2-68 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 2-40 The Create Table dialog box

2. In the Create Table dialog box, enter the table name as EmployeeAddress in the Name edit
box. Select the Advanced check box; advance options for creating a table will be displayed,
as shown 2-41.

3. In the Column Properties area, enter the column name as Employee_Id in the Name edit
box and select the data type from the Type drop-down list as NUMBER. Enter 5 in Precision
edit box.

4. Now, click on the Add Column button to add another column. Enter the column name
as Street in the Name edit box and select the data type from the Type drop-down list as
VARCHAR2. Enter 50 as width of the column in the Size edit box, as shown Figure 2-42.

5. Repeat step 4 and add other columns as:

 City : VARCHAR2(30) Country: VARHCAR2(30)
 State: VARCHAR2(20) Zip: VARCHAR2(15)

Introduction to SQL 2-69

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 2-41 The Create Table dialog box with advance options

Figure 2-42 The Create Table dialog box with two columns added

2-70 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
6. Now, click on the OK button; the EmployeeAddress table will be created and listed under

Tables in the Connections panel.

7. Now, right-click on the EmployeeAddress table and choose Constraints > Add Primary
Key; the Add Primary Key dialog box will be displayed, as shown in Figure 2-43.

Figure 2-43 The Add Primary Key dialog box

8. In the Add Primary Key dialog box, enter the name of primary key as PrimaryKey_EmployeeId
in the Primary Key Name edit box. Then, select the column name from the Column1
drop-down list as Employee_Id, as shown in Figure 2-44.

Figure 2-44 The Add Primary Key dialog box

9. Now, click on the Apply button; the Confirmation message box will be displayed
with the information that Table “EMPLOYEEADDRESS” primary constraint
PrimaryKey_EmployeeId has been added, as shown in Figure 2-45.

Introduction to SQL 2-71

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 2-45 The Confirmation dialog box

10. Repeat steps 8 and 9 to add other constraints on the required columns.

Modifying Tables Using Oracle SQL Developer
Using the Oracle SQL Developer, you can change the definition of existing table by using the
Edit Table dialog box in easy steps.

For example:

To change the definition of EmployeeAddress table, you need to follow the steps given below:

1. Right-click on the EmployeeAddress table and choose Edit; the Edit Table dialog will be
displayed, as shown Figure 2-46.

Figure 2-46 The Edit Table dialog box

2. To change the width of the CITY column, select CITY from the Columns list in the Edit
Table dialog box and enter 20 in the Size edit box.

2-72 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

3. Next, click on the Add Column button to add new column and enter column name
as HomePhone in the Name edit box. Then, select data type as NUMBER from the Type
drop-down list and enter 10 in the Precision edit box, as shown in Figure 2-47.

Figure 2-47 Adding new column as HomePhone

3. Now, click on the OK button to save changes.

Introduction to SQL 2-73

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

 Self-Evaluation Test
Answer the following questions and then compare them to those given at the end of this
chapter:

1. Which of the following commands is used to add lines to the existing command in the buffer?

 (a) GET (b) START
 (c) INPUT (d) APPEND

2. Which of the following commands is used to display the content of the buffer?

 (a) EDIT (b) CHANGE
 (c) LIST (d) None of these

3. Which of the following is character data type?

 (a) NVARCHAR2 (b) CHAR
 (c) Both (a) & (b) (d) None of these

4. The ______________ command is used to read the contents of the SQL buffer.

5. The ______________ command is used to view the structure of a database table.

6. The / (Slash) command is used to execute the current command in the _________________.

7. The NOT NULL constraint is a column level constraint. (T/F)

8. The DEFAULT constraint is used in a column to ensure that a Null value is not contained in
that column. (T/F)

9. The APPEND command is used to find and replace a string in the current line of the SQL
buffer. (T/F)

10. The START command is used to execute the contents of a file. (T/F)

 Review Questions
Answer the following questions:

1. Which of the following ALTER TABLE options is used to remove a column from a
database table?

 (a) DROP (b) MODIFY
 (c) DELETE (d) All the above

2-74 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
2. Which of the following constraints allows a Null value?

 (a) Primary Key Constraint (b) Unique Key Constraint
 (c) Default Constraint (d) None of the above

3. Which of the following commands is used to exit from SQL Plus or from command line?

 (a) QUIT (b) EXIT
 (c) END (d) Both (a) and (b)

4. Which of the following is the default date format of the DATE data type?

 (a) DD-MM-YY (b) DD-MON-YYYY
 (c) DD-MON-YY (d) None of these

5. The BINARY_DOUBLE value requires _________ bytes.

6. The BINARY_FLOAT value requires _________ bytes.

7. BLOB stands for _____________________.

8. The ______________ command is used to change the name of a column.

9. The ______________ command is used to delete the current line from the buffer.

10. BLOB data type can store data up to ______ in length.

EXERCISE
Exercise 1

Create a table with the name Employee having the following columns Empid, Ename,
Designation, Salary, Commission, Deptno. Also, declare a primary key constraint for the
Empid column.

Answers to Self-Evaluation Test
1. c, 2. c, 3. c, 4. GET, 5. DESC, 6. SQL buffer, 7. T, 8. F, 9. F, 10. T

