Chapter 3

Retrieving Data in SQL

Learning Objectives

After completing this chapter, you will be able to:

* Use the SELECT statement

* Work with SQL operators

* Work with Hierarchical Query Operators (PRIOR and CONNECT_BY_ROOT)
* Understand the Set operators (UNION, UNION ALL, INTERSECT, and MINUS)
* Understand the operator precedence

* Understand the CASE expression

* Understand Subqueries

* Apply Joins

* Work with the table and column aliases

* Understand pivot and unpivot queries



t www.cadcim.com

on visi

Evaluation Copy. Do not reproduce. For informat

3-2 Learning Oracle 12c: A PL/SQL Approach

INTRODUCTION

Data retrieval is the process of fetching data from database. You can retrieve data from database
using the SELECT statement. To retrieve desired data from the database, you need a set of
criteria and need to perform some operations on data through queries.

In this chapter, you will learn how to retrieve the desired data from database. You will also learn
about SQL Operators, Operator precedence, Subqueries, pivot and unpivot queries, and JOINS.
Additionally, you will learn about working with table and column aliases.

THE SELECT STATEMENT

The SELECT statement is the most popular SQL statement used for querying a table. This
statement is used to retrieve or view the data of one or more tables. The syntax for using the
SELECT statement is as follows:

SELECT *
FROM Table Name;

In the above syntax, SELECT and FROM are keywords and Table_Name is the name of the
table from which you want to view data rows. * (asterisk) is also a keyword and is used to retrieve
data from all columns or fields of a table.

For example:

Execute the following query in SQL Worksheet to get the record of all employees, as shown in
Figure 3-1.

SELECT * FROM EMPLOYEES;
Figure 3-1 shows the output of the above query when you execute it.

The above SQL query retrieves all information contained within the EMPLOYEES table. Note
that the asterisk is used as a wildcard in SQL. Literally, it means “Select all records from a table.”

You can use the following syntax to limit the attributes retrieved from a table:

SELECT Columnl, Column2,
FROM Table Name;

In the above syntax, SELECT and FROM are keywords and Columnl, Column2, ... are the
names of the columns for which you want to retrieve data. Table_Name is name of the table
from which you want to retrieve data.



Retrieving Data in SQL 3-3

Worksheet | Query Bulder

‘ SELECT * FROM EMPLOVEES: ‘

av

[ Query Result %

A 5§ & 50U | Fetching next 50 rows in 0.208 seconds

[ evrLoves D |E FIRST_NAME \@ LAST_NAME ‘ EMAIL |E PHONE_MUMBER |E HIRE_DATE ‘ J08_ID \E SALARY |E COMMISSION_PCT |E MANAGER_ID \El DEARTME\ITJD‘

1 100 Steven Xing SKING  515.123.4567 17-06-03  AD _PRES 24000 (null) (null) 90
2 101 Neena Kochhar NKOCHHER 515.123.4568 21-08-05  AD VE 17000 (null) 100 L
3 102Lex De Haan LDEHARN 515.123.4569 13-01-01  RD_VE 17000 (null) 100 20
4 103Alexander  Hunold AHUNOLD 590.423.4567 03-01-06  IT_EROG 9000 (null) 102 €0
5 104 Bruce Erast BERNST ~ 590.423.4568 21-05-07  IT_EROG 6000 (null) 103 &0
6 105 David Austin DAUSTIN 590.423.4563 25-06-05  IT_EROG 1800 (null) 103 &0
7 106Valli Pataballa  VPATABAL 590.423.4560 05-02-06  IT_PROG 1800 (null) 103 €0
3 107 Diana Lorentz DLORENTZ 590.423.5567 07-02-07  IT_EROG 4200 (null) 103 50
3 108 Nancy Greenberg  NGREEWBE 515.124.4569 17-08-02  FI_MGR 12008 (null) 101 100
1 109 Daniel Faviet DFAVIET 515.124.4169 16-08-02  FI_ACCOUNT 9000 (null) 108 100
11 110 John Chen JCHEN  515.124.4269 28-09-05  FI_ACCOUNT 8200 (null) 108 100
12 111 Tsmael Sciarra ISCIARRA 515.124.4369 30-09-05  FI_ACCOUNT 7700 (null) 108 100
13 112 Jose Manuel Urman DMURMAN  515.124.4469 07-03-06  FI_ACCOUNT 7800 (null) 108 100
14 113Lais Porp LPOPP  515.124.4567 07-12-07  FI_ACCOUNT 5900 (null) 108 100
15 114Den Raphaely ~ DRAPHEAL 515.127.4561 07-12-02  PU_MAN 11000 (null) 100 30
1 11SAlexander  Ehoo AKHOO  515.127.4562 18-05-03  FU_CLERK 3100 (null) 114 30
17 116 Shelli Baida SEATDA  515.127.4563 24-12-05  PU_CLERK 2900 (null) 114 30
Bt 117 Sigal Tobias STOBIAS 515.127.4564 24-07-05  FU_CLERK 2800 (null) 114 30
13 118 Guy Himro GHIMURO 515.127.4565 15-11-06  PU_CLERK 2600 (null) 114 30
) 119 Karen Colmenares KCOLMENA 515.127.4566 10-08-07  PU_CLERK 2500 (null) 114 30
21 120 Matthew eiss MREISS  6§50.123.1234 18-07-04  ST_MAN 8000 (null) 100 50

Figure 3-1 The rows retrieved from the EMPLOYEES table

For example:

The Human Resources department may require a list of ids and names of all employees of a
company. You can retrieve the required information using the following SQL statement:

SELECT EMPLOYEE ID, FIRST NAME, LAST NAME FROM EMPLOYEES;

Selecting Distinct Rows

You can retrieve distinct rows from a table by using the DISTINCT clause with the SELECT
statement. Retrieving distinct rows from the table prevents the selection of duplicate rows.
Following is the syntax for using the DISTINCT clause with the SELECT statement:

SELECT DISTINCT Column Name
FROM Table Name;

In the above syntax, Column_Name is the name of the column for which you want to
retrieve distinct values and Table_Name is the name of the table which contains the column
Column_Name.

Note
You can also use the UNIQUE keyword instead of the DISTINCT keyword to prevent the selection
of duplicate rows.

For example:

Enter the following query in SQL Worksheet and then execute it. The output of the query will
be displayed, as shown in Figure 3-2.

SELECT JOB_ID FROM EMPLOYEES;

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-4 Learning Oracle 12c: A PL/SQL Approach

Wiarksheet Query Builder
| SELECT JOE_ID FROM EMFLOYEES

-

[ Query Result x
f E Eﬂ @ SQL | Fetched 50 rows in 0.006 seconds
JOB_ID

=

e

EJFI_ACCOUNT
ENFT_ACCOUNT
LT nCCouNT
$M8 T 2CCOUNT
12 FI_MGR
13 HR_REP
SEYTT rROG
SN TT TROG
16 plgelee
17 plgeleed
SENTT rroG
19 MK MAN
20 MK_REP
21 PR_REP
PEAEU CLERK
PELEU_ CLERK
PR EU_CLERK
PE U CLERK
25 [ilfuia
27 BU_MEN

Figure 3-2 Output with duplicate rows

This query will retrieve a list of job ids. Notice that the job ids FI_ACCOUNT, IT_PROG, and
PU_CLERK appear more than once. Now, if you want to retrieve the list of different job ids with
no job ids being repeated in the list, use the DISTINCT clause with the SELECT statement, as
shown below. Figure 3-3 shows the output of the following query:

SELECT DISTINCT JOB ID FROM EMPLOYEES;

The above query will retrieve all distinct job ids from the EMPLOYEES table.

Selecting Rows with the WHERE Clause

The WHERE clause is used with the SELECT, DELETE, or UPDATE statement to select,
delete, or update the data from a table on the basis of a condition. Also, this clause is used to
filter the data from the database. The WHERE clause selects, deletes, or updates only those
rows in which expressions evaluate to true.



Retrieving Data in SQL 3-5

Worksheet Query Builder
‘ SELECT DISTINMCT JOE_ID FROM EMFLOYEES:
.. d
DQuery Result *
s B, ) Bk 5oL | Al Rows Fetched: 19 in 0,005 seconds
@ 108D
1 BC RCCOUNT
2 AC MGR
3 D BSST
4 AD PRES
5 AD VE
6 FI_ACCOUNT
7 FI_MGR
8 HE_REP
3 IT_PROG
10 MK_MAN
11 MK_REP
12 FR_REF
13 BU_CLERK
14 PU_MAN
15 5B_MAN
16 52 REP
17 5H_CLERK
18 5T_CLERK
19 5T MEN

Figure 3-3 Output with distinct rows

The syntax for using the WHERE clause is as follows:

SELECT Column Name
FROM Table Name
WHERE Column Name/Expression Operator Value/Expression;

In the above syntax, SELECT, FROM, and WHERE are the keywords; Column_Name is the
name of the column that you want to select from the table; and Table_Name is the name of
the table. The WHERE clause used with both the DELETE and UPDATE statements will be
discussed later in this chapter.

For example:

Enter the following command lines in SQL Worksheet and then execute them. The output of
the query will be displayed, as shown in Figure 3-4.

SELECT EMPLOYEE ID, FIRST NAME, LAST NAME, HIRE DATE, SALARY,
JOB_ID FROM EMPLOYEES WHERE JOB ID= ‘IT PROG’;

In the above SQL statement, the WHERE clause will filter the data from the EMPLOYEES
table. The above SQL statement will return all rows having the job id IT_PROG.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-6 Learning Oracle 12c: A PL/SQL Approach

Worksheet Query Builder

SELECT EMPLOYEE_ID,FIRST NAME, LAST NAME,HIRE DATE, SALARY,TOE_ID FROM EMPLOYEES
WHERE JOE_ID='IT_PROG';

.
[ Query Result x

5 @) 5 soL | Al Rows Fetched: 5in 0.004 seconds
eMLOYEE_ID [[§ FRsT_name | LasT_name [ HIRE_DATE [ saLary [J 08D |

1 103 Alexander Hunold 03-01-0& 9000 IT_EROG
2 104 Bruce Ernst 21-05-07 @000 IT_EROG
3 105 David Austin 25-06-05 4800 IT_PROG
4 106 Valli Pataballa 05-02-0& 4800 IT_PROG
5 107 Diana Lorentz 07-02-07 4200 IT_PFROG

Figure 3-4 The SELECT statement with the WHERE clause

Table Alias Names

Table alias refers to a different name for a table for the purpose of evaluating the query and is
most often used in a correlated query. You can code the query with an alias for the table name
to make the query easier to code.

For example:
Consider the query given below to retrieve data from two tables:

SELECT EMPLOYEES.FIRST NAME, DEPARTMENTS.DEPARTMENT NAME
FROM EMPLOYEES RIGHT OUTER JOIN DEPARTMENTS
ON EMPLOYEES.DEPARTMENT ID=DEPARTMENTS.DEPARTMENT ID;

This query can be coded with the alias for the table name as follows:

SELECT E.FIRST NAME, D.DEPARTMENT NAME
FROM EMPLOYEES E RIGHT OUTER JOIN DEPARTMENTS D
ON E.DEPARTMENT ID=D.DEPARTMENT ID;

In the above example, the table EMPLOYEES is referred by the alias E and the table
DEPARTMENTS is referred by the alias D. The above query will return only those rows in which
the values of the column DEPARTMENT_ID of the table EMPLOYEES match with values of
the column DEPARTMENT_ID of the table DEPARTMENT.

Column Alias Names

Column alias refers to the different name for a database column expression and this alias is
used for column headings. It does not affect the actual column name. It can be used to show
the name of the column according to the user requirement.

For example:

Consider the query given below:



Retrieving Data in SQL 3-7

SELECT EMPLOYEE ID, FIRST NAME
FROM EMPLOYEES;

This query can be coded with the alias for the table name in the following way:

SELECT EMPLOYEE ID “ID”, FIRST NAME "“NAME”
FROM EMPLOYEES;

The above query will display two columns from the table EMPLOYEES. The first column will
have the heading ID and the other column will have the heading Name.

SELECT EMPLOYEE_ID “Iip”, FIRST_NAME (I \\LAST_NAME “Name”,
SALARY “Basic Salary”, SALARY + NVL(COMMISSION PCT, 0) “Net Salary”
FROM EMPLOYEES WHERE SALARY >= 12000;

The above query will display four columns from the table EMPLOYEES. The first column will
have the heading ID, the second column will have the heading Name, third and fourth columns
will have headings Basic Salary and Net Salary. The output of the above query is shown in
Figure 3-5.

Worksheet Query Builder

SELECT EMPLOYEE_ID "ID", FIRIT_NAME ||' '||LAST NAME "Name",
SALARY "Basic Salary™, SALARY + NVL(COMMISSION_PCT, 0) "Net Salary™
FROM EMPLOYEES WHERE 3ALARY >= 1Z000;

.
[ Query Result x
e E Elﬂ @ SQL | All Rows Fetched: 9 in 0.005 seconds

D | Name | Basic Salary | Met Salary
1 100 Steven Hing 24000 24000
2 101 Neena Kochhar 17000 17000
3 102 Lex De Haan 17000 17000
4 108 Nancy Greenberg 12008 12008
5 145 John Russell 14000 14000.4
6 144 Karen Partners 13500 13500.3
7 147 Alberto Errazuriz 12000 12000.3
3 201 Michael Hartstein 13000 13000
9 205 Shelley Higgins 12008 12008

Figure 3-5 Retrieving data with column alias names

Note
The NVL function will be discussed in later chapters.

SELECTING DATA FROM THE DUAL TABLE

The Dual table is the default table in the Oracle database. It is created by Oracle along with the
data dictionary. It is a special one-row and one-column table. The Dual table has exactly one
column called DUMMY of VARCHARZ2(1) data type, as shown in Figure 3-6. The table has a
single row with a value of X (here X can be any value), as shown in Figure 3-7. The owner of the
dual table is SYS but it can be accessed by every user in the Oracle database.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-8

Learning Oracle 12¢

: A PL/SQL Approach

Worksheet Query Builder

‘ DESC DUAL;

-

Elsaipt output * | [ Query Result x

& ¢ H B E | Task completedin 0.008 seconds

DESC DUAL
Name Iull Type

DUMMT VARCHARZ (1)

Figure 3-6 Structure of DUAL table

Worksheet Query Builder

‘ SELECT * FROM DUAL;

.

b Query Result 1 *
A & ) B 5ol | Al Rows Fetched: 1in 0.001 seconds

B oummy

1%

Figure 3-7 Row of DUAL table

The following example will illustrate the use of the DUAL table to find the system date and the

current user:

SELECT SYSDATE,USER
FROM DUAL;

In the above example, the SELECT statement query will return the system date and
the name of current user, as shown in Figure 3-8. The SYSDATE function is used to return the
system date and is discussed in the later chapters.

Waorksheet Query Builder

SELECT SYSDATE, USER
FROM LUAL:

.

[Elsaipt Output * | [ Query Result x
A & ) B soL | Al Rows Fetched: 1in 0.002 seconds

B svspate |} user

122-04-18 HR

Figure 3-8 Selecting SYSDATE and USER from
the DUAL table



Retrieving Data in SQL

SQL OPERATORS

An operator is a symbol or character that is capable of manipulating individual data items and
then returning a result. The data item on which an operator operates is called an operand. An
operator can operate on a single operand or two operands. Operators that operate on single
operand are called Unary operators and the operators that operate on two operators are called

Binary operators. The following operators are supported by Oracle:

Arithmetic Operators
Concatenation Operators

Comparison Operators
Logical Operators
Other Operators

Set Operators

N OOtk 00—

Hierarchical Query Operators

These operators are discussed next.

Arithmetic Operators

Oracle database uses arithmetic operator to perform arithmetic operations on one or more
numeric values. Some of the arithmetic operators are also used with datetime and interval

operations. The arithmetic operators and their usage are discussed in Table 3-1.

Table 3-1

The Arithmetic operators and their description

Operator

Description

+. -

These are unary operators that represent the positive and
negative expressions.

+

This is the addition operator. It is used to add two data
items or expressions. It is a binary operator.

This is the subtraction operator. It is used to subtract two
data items or expressions. It is also a binary operator.

This is the multiplication operator. It is used to multiply
two data items or expressions. It is also a binary operator.

This is the division operator. It is used to divide two
data items or expressions. It is also a binary operator.

Following are the examples of arithmetic operators.

The following query is used to add two values in Oracle:

SELECT 5 + 5 Total Value

FROM DUAL;

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



t www.cadcim.com

on visi

Evaluation Copy. Do not reproduce. For informat

3-10 Learning Oracle 12c: A PL/SQL Approach

Output:
TOTAL _VALUE

The result of the above query will be stored in the TOTAL_VALUE column of the numeric
data type.

The following query is used to divide a value with other value:

SELECT 8 / 2 Total Value
FROM DUAL;

Output:

TOTAL VALUE

4
The following query adds specified number of days to SYSDATE:

SELECT SYSDATE, (SYSDATE) + 10
result date FROM dual;

Output
SYSDATE RESULT _DATE
20416 02-05-16
Note

The output of above query will depend on the current system date.

Concatenation Operators

The concatenation operators allow you to combine two or more characters or strings, columns
together into one expression. If any of the concatenation values is NULL, Oracle treats it as
zero length character string and returns the string having a value. In Oracle, two solid vertical
bars || are used as concatenation operator.

For example:

SELECT ‘CADCIM’ || “ ' || ‘TECHNOLOGIES’" ™“COMPANY”
FROM DUAL;



Retrieving Data in SQL 3-11

Output:

COMPANY

CADCIM TECHNOLOGIES

Hierarchical Query Operators

Hierarchical query operators are used on the tables which contain hierarchical data. Hierarchical
data is a parent-child relationship of data within the same table or view. There are two hierarchical
query operators PRIOR and CONNECT_BY_ROOT.

PRIOR

PRIOR is a unary operator which is used with CONNECT BY clause in hierarchical queries. It
can exist on either side of equality condition of the clause. It is mostly used to compare column
values with the equality operator. Due to PRIOR operator, the direction of hierarchy flow is
decided on the basis of the CONNECT BY clause condition.

The syntax for using PRIOR operator is as follows:

SELECT

FROM

START WITH

CONNECT BY [PRIOR] condition

In the above syntax, the START WITH clause specifies a condition that identifies the rows to
be used as the root of a hierarchical query.

For example:

SELECT EMPLOYEE ID, FIRST NAME, LAST NAME, MANAGER ID,
LPAD (LEVEL, 5* (LEVEL)) “LEVEL”
FROM EMPLOYEES WHERE EMPLOYEE ID<115
START WITH EMPLOYEE ID = 100
CONNECT BY PRIOR EMPLOYEE ID = MANAGER ID
ORDER SIBLINGS BY FIRST NAME;

The above SQL query will show the hierarchical relationship of employees and managers in
an organization. The SIBLINGS keyword used in ORDER BY clause preserves any ordering
within the hierarchy. The LEVEL is the pseudocolumn which returns 1 for a root row and 2 for
a child row, and so on. The output of above query is shown in Figure 3-9.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



t www.cadcim.com

on visi

Evaluation Copy. Do not reproduce. For informat

3-12 Learning Oracle 12c: A PL/SQL Approach

Worksheet Query Builder

= SELECT EMPLOVEE ID, FIRST NAME, LAST NAME, MANAGER ID, LPAD(LEVEL, 5+%(LEVEL)) "LEVEL™
FROM EMPLOYEES WHERE EMPLOYEE ID<115
START WITH EMPLOYEE_ID = 100
COMMECT BY PRIOR EMPLOYEE TD = MANAGER ID
ORDER. SIBLINGS BY FIRST NAME:

..
DQuery Result *
s B, &0 3k sqL | AlRows Fetched: 15 in 0,007 seconds

empLOYEE D || FIrsT_naME [§ LasT namE | manacer D [§ LEVEL

1 100 Stewven King {mall) 1

2 114 Den Raphaely 100 2

3 102 Lex De Haan 100 2

4 103 Alexander Hunold 102 3

5 104 Bruce Ernst 103 4
& 105 David Austin 103 L]
7 107 Diana Lorentz 103 4
] 106 Valli Pataballa 103 4
9 101 Neena Kochhar 100 2
10 108 Naney Greenberg 101 3
11 109 Daniel Faviet 108 4
12 111 Ismael Sciarra 108 4
13 110 John Chen 108 4
14 112 Jose Manuel Urman 108 L]
15 113 Luis Popp 108 4

Figure 3-9 Using the PRIOR operator with the SELECT statement

CONNECT_BY_ROOT

CONNECT_BY_ROOT is a unary operator which is used in hierarchical queries. It enhances the
functionality of CONNECT BY [PRIOR] condition. Oracle returns the column values from the
root node associated with row of the column specified with the CONNECT_BY_ROOT operator.

For example:

SELECT EMPLOYEE ID, FIRST NAME|| ' ' ||[LAST NAME “EMPLOYEE”,
MANAGER ID, CONNECT BY ROOT FIRST NAME "“MANAGER”,

LEVEL-1 “LEVEL”, SYS CONNECT BY PATH(FIRST NAME, ‘/’) “HIERARCHY”
FROM EMPLOYEES WHERE LEVEL > 1 and DEPARTMENT ID = 60

CONNECT BY PRIOR EMPLOYEE ID = MANAGER ID

ORDER BY “EMPLOYEE”, "“MANAGER”, “LEVEL”, “HIERARCHY”;

The above example returns the first name of each employee in department 60, each manager at
the level upper than the employee in the hierarchy, the number of levels between manager and
employee, and the path between the two. The output of the above query is shown in Figure 3-10.



Retrieving Data in SQL 3-13

Worksheet Query Builder

(= SELECT EMPLOYEE_ID, FIRST NAME||' '||LAST NAME "EMPLOVEE",
MANAGER_ID, COHHECT BY ROOT FIRST NAME "MANAGER",
LEVEL-1 "LEVEL", S¥%_CONNECT BY_ PATH(FIRST NAME, '/') "HIERARCHY"
FROM EMPLOYEES VHERE LEVEL > 1 and DEPARTMENT ID = &0
COHHECT BY PRIOR EMPLOYEE ID = MANAGER ID
ORDER BY "EMPLOYEE™, "MANAGER", "LEVEL", "HIERARCHY™;

aw
[l script output = = Query... *
A & W) & sqL | All Rows Fetched: 14 in 0 seconds

emprovee 0 B empiovee |8 manacer D |f manacer [ LEVEL|H HERARCHY

1 103 Rlexander Hunold 102 Lex 1 /Lex/Rlexander
2 103 Rlexander Hunold 102 Steven 2 f5teven/Lex/Rlexander
3 104 Bruce Ernst 103 Alexander 1 /RAlexander/Bruce
4 104 Bruce Ernst 103 Lex 2 fLex/Rlexander/Bruce
5 104 Bruce Ernst 103 Steven 3 /Steven/Lex/Alexander/Bruce
i 105 David Rustin 103 Alexander 1 fAlexander/David
7 105 David Rustin 103 Lex 2 fLex/Rlexander/David
8 105 David Rustin 103 Steven 3 /Steven/Lex/Rlexander/David
9 107 Diana Lorentz 103 Alexander 1 /RAlexander/Diana
10 107 Diana Lorentz 103 Lex 2 /Lex/Rlexander/Diana
11 107 Diana Lorentz 103 Steven 3 /5teven/Lex/Rlexander/Diana
12 106 Valli Pataballa 103 Rlexander 1 /Rlexander/Valli
13 106 Valli Pataballa 103 Lex 2 fLex/Rlexander/Valli
14 106 Valli Pataballa 103 Steven 3 f5teven/Lex/Rlexander/Valli

Figure 3-10 Using the CONNECT_BY_ROOT operator with the SELECT statement

Comparison Operators
The Comparison operators are used to compare one expression with another expression. These
operators compare two values or expressions and return a boolean result TRUE, FALSE, or NULL.
The Comparison operators are = (Equal), < (Less than), > (Greater than), <= (Less than or
equal to), >= (Greater than or equal to), <> and != (Not equal to), and value comparisons.
These operators are discussed next.

= (Equal)
This operator is used in a conditional statement. If the value or the result of expression on both
sides of the operator is equal, the condition will be TRUE.

For example:

SELECT EMPLOYEE ID, FIRST NAME || '’ || LAST NAME “ENAME”, SALARY,
DEPARTMENT ID FROM EMPLOYEES WHERE DEPARTMENT ID=30;

In the above example, the SQL query will return all those records of the EMPLOYEES table in
which the department number is 30. The output of above query is shown in Figure 3-11.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



t www.cadcim.com

on visi

Evaluation Copy. Do not reproduce. For informat

3-14 Learning Oracle 12c: A PL/SQL Approach

Worksheet Query Builder

SELECT EMPLOYEE_ID, FIRAT NAME || ' ' || LAST_NAME "ENAME™, ZALARY,
DEPARTMENT ID FROM EMPLOYEES WHERE DEPARTMENT ID=30;

%
|=|script output | B> Query Result
@ B ) Bk soL | Al Rows Fetched: & in 0.003 seconds

EMPLOYEE_ID |[| ENAME [@ saLary [ DEPARTMENT_ID
1 114 Den Raphaely 11000 30
2 115 Alexander EKhoo 3100 30
3 116 5helli Baida 2900 30
4 117 5igal Tcbias 2800 340
5 112 Guy Himuro 2e00 30
[ 119 Karen Colmenares 2500 30

Figure 3-11 Using the Equal operator with the SELECT statement

1=, <>, or ©* = (Not Equal to)

These operators are used to check inequality. If the value or result of expression on both sides
of the operator is not equal, the condition will evaluate to TRUE.

For example:

SELECT * FROM DEPARTMENTS WHERE LOCATION ID <> 1700;

In the above example, the SQL query will return all those records of the DEPARTMENTS table,
in which the location id is not 1700. The output of the above query is shown in Figure 3-12.

Worksheet Query Builder
SELECT * FROM DEPARTMENTS WHERE LOCATION_ID <> 1700;

% 4

[ Query Result =
B ) 5% soL | Al Rows Fetched: 6 in 0,003 seconds
DEPARTMENT_ID [B DEPARTMENT NAME || MaNAGER_ID [ LOCATION_ID

1 20 Marketing 201 1800
2 40 Human Resources 203 2400
3 30 Shipping 121 1300
4 60 IT 103 1400
5 70 Public Relations 204 2700
[ 80 Sales 145 2500

Figure 3-12 Using the Not Equal to operator with the SELECT statement

< (Less Than)
If the value or result of an expression on the left of the operator is less than the value or result of
an expression on the right side of the operator, the < (Less than) operator will evaluate to TRUE.



Retrieving Data in SQL 3-15

For example:

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”, SALARY
FROM EMPLOYEES WHERE SALARY<2500;

In the above example, the SQL query will return all those records from the EMPLOYEES table
in which the salary is less than 2500. The output of the above query is shown in Figure 3-13.

Worksheet Query Builder

SELECT EMPLOYEE_ID, FIRST _NAME || ' ' || LAST NAME "ENAME™,
SALARY FROM EMPLOYEES VHERE SALARY<Z500;

W
[Elsoript output x| B> Query Result

& B @3 3% soL | AlRows Fetched: 5in 0,003 seconds

EMPLOYEE_ID [[§ ENAME P
1 127 James Landry 2400
2 128 Steven Markle 2200
3 132 TJ Clson 2100
4 135K Gee 2400
5 136 Hazel Philtanker 2200

Figure 3-13 Using the Less Than operator with the SELECT statement

> (Greater Than)
If the value or the result of an expression on the left of the operator is more than the value or
result of an expression on the right, the > (Greater than) operator will evaluate to TRUE.

For example:

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”, SALARY
FROM EMPLOYEES WHERE SALARY>15000;

In the above example, the SQL query will return all those records from the EMPLOYEES table
in which the salary is greater than 15000. The output of the above query is shown in Figure 3-14.

Worksheet Query Builder

SELECT EMPLOYVEE_ID, FIRST_NAME || ' ' || LAST NAME "ENAME™,
SALARY FROM EMPLOYEES WVHEBRE SALARY-15000;

% 4
QSD’ipt Output * DQuery... x
& B, @9 B} sqL | AlRows Fetched: 3in 0.003 seconds

EMPLOYEE_ID [[§ ENAME @ saLary |
100 Stewven King 24000

2 101 Neena Kochhar 17000
3 102 Lex De Haan 17000

Figure 3-14 Using the Greater Than operator with the SELECT statement

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-16 Learning Oracle 12c: A PL/SQL Approach

<= (Less Than or Equal to)

If the value or result of an expression on the left of this operator is either less than or equal to
the value or result of an expression on the right of the operator, the <= (Less than or Equal to)
operator will evaluate to TRUE.

For example:

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”, SALARY
FROM EMPLOYEES WHERE SALARY<=2200;

In the above example, the SQL query returns all those records of the EMPLOYEES table in which
the salary is less than or equal to 2200. The output of the above query is shown in Figure 3-15.

Worksheet Query Builder

SELECT EMPLOYEE_ ID, FIEST NAME [| ' ' || LAST NAME "ENAME™,
SALARY FROM EMPLOYEES WHERE SALARY<=2200;

..
Q Seript Cutput * D Query Result *
@ E 9 B 5oL | AlRows Fetched: 3in 0,003 seconds

EMPLOYEE_ID [[§ ENAME |8 sacarr|
128 Steven Markle 2200

2 132 TJ Clscn 2100
3 136 Hazel Philtanker 2200

Figure 3-15 Using the Less Than or Equal to operator with the SELECT statement

> = (Greater Than or Equal To)

If the value or result of an expression on the left of this operator is either greater than or equal
to the value or expression on the right of this operator, the >= (Greater than or Equal to)
operator will evaluate to TRUE.

For example:

SELECT EMPLOYEE ID, FIRST NAME || ' '/ || LAST NAME “ENAME”, SALARY
FROM EMPLOYEES WHERE SALARY>=14000;

In the above example, the SQL query will return all those records of the EMPLOYEES table in
which the salary is either equal to or more than 14000. The output of the above query is shown
in Figure 3-16.



Retrieving Data in SQL 3-17

Worksheet Query Builder

SELECT EMPLOYEE_ID, FIRST NAME || ' ' || LA3T_NAME "ENAME"™,
SALARY FROM EMPLOYEEZ WHERE SALARY>=14000:

-

[ Query Result =
@ 5 @3 3} soL | AlRows Fetched: 4in 0,004 seconds

EMPLOYEE DD [[§ ENAME @ saary |
1 100 Steven King 24000
2 101 Neena Kochhar 17000
3 102 Lex De Haan 17000
4 145 John Bussell 14000

Figure 3-16 Using the Greater Than or Equal to operator with SELECT statement

ANY or SOME

The ANY or SOME operator is used to compare a value with each value in a list or the values
returned by a query. These operators must be preceded by a Comparison operator =, !=, >,
<, <=, or>=.

If ANY or SOME comparison operator is followed by a list of values, Oracle optimizer expands
the condition to all the values of the list together with the OR operator.

For example:

SALARY > ANY (2000, 3000)
transformed to

SALARY > 2000 OR SALARY > 3000

Also, if ANY or SOME operator is followed by the subquery, Oracle optimizer transforms it into
a condition containing the EXISTS operator and a subquery.

For example:

SALARY1 > ANY (SELECT SALARY FROM EMPLOYEES
WHERE DEPARTMENT ID=60)

transformed to

EXISTS (SELECT SALARY FROM EMPLOYEES
WHERE DEPARTMENT ID=60 AND SALARY1>SALARY)

The following example will illustrate the use of ANY and SOME operators with the comparison
operator >(greater than):

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



3-18 Learning Oracle 12c: A PL/SQL Approach

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”,
SALARY, HIRE DATE FROM EMPLOYEES WHERE SALARY>SOME (13000,15000,20000) ;

Or

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”,
SALARY,HIRE DATE FROM EMPLOYEES WHERE SALARY>ANY (13000,15000,20000) ;

In this example, the SQL query will return all those records of the EMPLOYEES table in which
the salary of employee is greater than any of values in the list (13000, 15000, 20000). The output
of the above query is shown in Figure 3-17.

Worksheet Query Builder

SELECT EMPLOYEE_ID, FIRST NAME || ' ' || L&5T_NAME "ENAME™,
SALARY ,HIRE _DATE FROM EMPLOYVEES WHERE 3ALARY-SOME (13000 ,15000,20000) »

-

[ Query Result x
& B @3 3% soL | Al Rows Fetched: 5in 0,002 seconds

EMPLOYEE_ID (B ENAME (B saLary | Hme_DaTE
1 100 Steven King 24000 17-06-03
2 101 Neena Kochhar 17000 21-09-05
3 102 Lex De Hazn 1700013-01-01
4 145 John Russell 14000 01-10-04
5 146 Karen Partners 13500 05-01-05

Figure 3-17 Using the SOME operator with the SELECT statement

The following example will illustrate the use of the ANY and SOME operators with the
comparison operator =(Equal):

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”,
SALARY,HIRE DATE FROM EMPLOYEES WHERE SALARY=ANY (13000,15000,20000) ;

Or

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”,
SALARY, HIRE DATE FROM EMPLOYEES WHERE SALARY=SOME (13000,15000,20000) ;

In the above example, the SQL query will return all those records of the EMPLOYEES table in
which the salary is equal to the values in the list (13000, 15000, 20000).

Note
When the ANY operator is used with the comparison operator =(Equal), it works the same way
as the IN operator. The IN operator will be discussed later in this chapter.

\

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

ALL

The ALL operator is used to compare a value with every value in a list or the value returned by
a query. This operator must be preceded by the comparison operator =, !=, >, <, <=, or >=.



Retrieving Data in SQL 3-19

If the ALL comparison operator is followed by a list of values, Oracle optimizer expands the
condition to all the values of the list together with the AND operator.

For example:

SALARY > ALL (2000, 3000)
transformed to

SALARY > 2000 AND SALARY > 3000
Also, if the ALL operator is followed by a subquery, Oracle optimizer transforms it into a
condition that uses ANY comparison operator and a complementary comparison operator
including subquery.
For example:

SALARY1 > ALL(SELECT SALARY FROM EMPLOYEES
WHERE DEPARTMENT ID=60)

transformed to

NOT (SALARY1 <= ANY (SELECT SALARY FROM EMPLOYEES
WHERE DEPARTMENT ID = 60))

After further transforming the ANY operator above condition will look like:

NOT EXISTS (SELECT SALARY FROM EMPLOYEES
WHERE DEPARTMENT ID=60 AND SALARY1l <= SALARY)

The following example will illustrate the use of the ALL operator with the comparison operator >
(greater than):

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”,
SALARY, HIRE DATE FROM EMPLOYEES WHERE SALARY>ALL (8000,10000,13000) ;

In this example, the SQL query will return all those records of the EMPLOYEES table in which
the salary of employee is greater than each of the values in the list (8000, 10000, 13000). The
output of the above query is shown in Figure 3-18.

The following example will illustrate the use of the ALL operator with the comparison
operator >= (greater than or equal to):

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”,
SALARY,HIRE DATE FROM EMPLOYEES WHERE SALARY>=ALL (8000,10000,13000) ;

In the above example, the SQL query will return all those records of the EMPLOYEES table in
which the salary of employee is greater than or equal to the values in the list (8000, 1000, 13000).

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-20 Learning Oracle 12c: A PL/SQL Approach

Worksheet Query Builder

SELECT EMFLOYEE ID, FIRST NAME || ' ' || LAST NAME "ENAME™,
SALARY ,HIRE DATE FROM EMPLOYEES WHERE SALARY-RLL (S000,10000,13000)

-

[ Query Result 1 ¥ D Query Result 2 X
I 3 El.l Elﬂ @ SQL | All Rows Fetched: 5in 0.005 seconds

EMPLOYEE_ID [ ENAME [ saary | HRE_DATE
1 100 Steven King 24000 17-06-03
2 101 Neena Kochhar 17000 21-09-05
3 102 Lex De Haan 17000 13-01-01
4 145 John Russell 14000 01-10-04
5 l4a Karen Partners 13500 05-01-05

Figure 3-18 Using the ALL operator with the SELECT statement

Logical Operators
The logical operators are used to compare two or more conditions to produce result. The logical
operators are discussed next.

NOT

The NOT operator is used to reverse the output of any other logical operator. This
operator will return TRUE, if the given condition is FALSE, and will return FALSE, if the given
condition is TRUE.

For example:

SELECT * FROM EMPLOYEES
WHERE NOT (JOB ID IS NULL);

The above query will return all those records of the EMPLOYEES table in which the column
JOB_ID is not Null.

The following example will illustrate the use of the BETWEEN operator with the NOT operator.

SELECT * FROM EMPLOYEES
WHERE NOT (SALARY BETWEEN 1000 AND 2000) ;

The above query will return all those records of the EMPLOYEES table in which the salary is
not between 1000 and 2000.

AND

The AND operator joins two or more than two conditions. This operator will return TRUE,
if both conditions are TRUE, and will return FALSE, if one of the conditions is FALSE.
Otherwise, it will return an unknown value.



Retrieving Data in SQL 3-21

For example:

SELECT EMPLOYEE ID, FIRST NAME, LAST NAME, JOB ID, SALARY
FROM EMPLOYEES WHERE JOB ID = ‘ST CLERK’ AND SALARY > 2500;

The above query will return all those records of the EMPLOYEES table in which both the
conditions, JOB_ID = ‘ST_CLERK’ and SALARY > 2500, return TRUE, as shown in Figure 3-19.

Worksheet Query Builder

SELECT EMPLOYEE_ID, FIRST NAME, LAST NAME, JOE_ID, SALARY FROM EMPLOYEES
THERE JOB_ID = 'ST _CLERK' BHD 3SALARY > 2500:

..
D-Query Result *
@ B 9 B} 5oL | AlRows Fetched: 12in 0,005 seconds

ewpLovee 1D [ FRsT_name [ LasT_nave || 108_m | saiary |

1 125 Julia Hayer S5T_CLERE 3200
2 126 Irene Mikkilineni 5T CLEREK 2700
3 125 Laura Bissot 5T_CLERK 3300
4 130 Mozhe Atkinson 5T_CLERK 2800
3 133 Jason Mallin 5T_CLERK 3300
] 134 Michael Rogers ST_CLERK 2900
7 137 Renske Ladwig ST_CLERK 3600
8 138 5tephen 5tiles 5T_CLERK 3200
9 139 John S5en 5T_CLERK 2700
10 141 Trenna Rajs 5T_CLERK 3500
11 142 Curtis Davies 5T_CLERK 3100
12 143 Randall Matos 5T_CLERK 2600

Figure 3-19 Query showing the use of the AND operator

OR

The OR operator joins two or more than two conditions. This operator will return TRUE, if one
of the conditions evaluates to TRUE and will return FALSE, if both the conditions evaluate to
FALSE. Otherwise, it will return an unknown value. The OR operator is evaluated after the AND
operator.

SELECT EMPLOYEE ID, FIRST NAME, LAST NAME, JOB ID, SALARY
FROM EMPLOYEES WHERE JOB ID = ‘ST CLERK’ OR SALARY > 15000;

This above query will return all those records from the EMPLOYEES table in which one of the
conditions, JOB_ID = ‘IT_PROG’ or SALARY > 15000 is TRUE, as shown in Figure 3-20.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-22 Learning Oracle 12c: A PL/SQL Approach

Warksheet Query Builder

SELECT EMPLOYEE_ID, FIRST NAME, LAST NAME, JOE_ID, SALARY FROM EMPLOYEES
WHERE JOE_ID = 'IT_PROG' OR SALARY > 15000;

rFa

DQuery Result *
@ B 9 B sqL | Al Rows Fetched: in 0,006 seconds
EMLOYEE ID |[§ FIRsT_NAME |[§ LasT_Name [ 08D [ sALaRy |

1 100 Steven King AD FRES 24000
2 101 Heena Eochhar AD VP 17000
3 102 Lex De Haan AD VP 17000
4 103 Alexander Hunold IT_FROG 9000
5 104 Bruce Ernst IT_FROG 6000
3] 105 David Bustin IT_FROG 4800
7 106 Valli Pataballa IT_FROG 4800
8 107 Diana Lorentz IT_FROG 4200

Figure 3-20 Query showing the use of the OR operator

Other Operators

Oracle provides some other operators as well. These are discussed next.

LIKE Operator

You can use the LIKE operator in a character string. This operator compares the string with
the matching pattern. Sometimes, you may need to perform searches by matching part of a
character string. In such cases, you can use the LIKE operator. For example, you may need to
retrieve the name of the students, whose last name begins with the letter M, or find all courses
with the initial letters MIS. To do so, you can use the LIKE operator. The general syntax for
using the LIKE operator in the search condition is as follows:

SELECT Columnl, ColumnZ........ueeee...
FROM Table
WHERE Column Name LIKE ‘Char_String’;

In the above syntax, Char_String is the pattern with which the Column_Name will be compared.
The pattern is a value having the data type CHAR or VARCHAR?2 and contains the special

matching pattern characters: percent sign (%) and underscore (_).

The percent sign (%) denotes single number or multiple numbers of unknown characters, and
underscore sign (_) denotes only an unknown character.

For example:

SELECT EMPLOYEE ID, FIRST NAME, LAST NAME, SALARY FROM EMPLOYEES
WHERE FIRST NAME LIKE ‘M%’;

The above query will return all the rows of EMPLOYEES table where the FIRST_NAME starts
with letter M. The output of the above query is shown in Figure 3-21.



Retrieving Data in SQL 3-23

Worksheet Query Builder

SELECT EMPLOYEE_ID, FIRIT_NAME, LAST NAME, 3SALLRY FROM EMPLOYEES
WHERE FIRST NAME LIEE 'M%';

..
DQuery Result *
& B ) B sou | Al Rows Fetched: 6in 0.024 seconds

ewpLovee D || FIRsT_name [ LasT_NavE || savary |

1 130 Mozhe Etkinson 2800
2 201 Michael Hartstein 13000
3 164 Mattea Marvins 7200
4 134 Michael Bogers 2300
3 182 Martha Sulliwvan 2500
6 120 Matthew Weiss 2000

Figure 3-21 Query showing the use of the (%) percent sign with the LIKE operator

The following example will illustrate the use of the LIKE operator with the matching pattern
characters: percent sign (%) and underscore (_).

Example 1

Write queries that will illustrate the use of the LIKE operator with the matching pattern characters
percent sign (%) and underscore (_).

The following steps are required to use the LIKE operator.

1. In SQL Worksheet, enter the following SQL query to retrieve the rows in which the first
name of employees begins with the letter A:

SELECT FIRST NAME, SALARY, JOB ID, COMMISSION PCT, HIRE DATE
FROM EMPLOYEES WHERE FIRST NAME LIKE ‘A%’;

In the above example, the percent sign (%) used after the character A in the LIKE
operator represents any possible character or a set of characters that may appear after A.
Thus, the above query will return all those employees whose first name begins with the
character A.

2. In SQL Worksheet, enter the following SQL query to retrieve the rows in which the name
of employees contains the word en:

SELECT FIRST NAME, SALARY, JOB ID, COMMISSION PCT, HIRE DATE
FROM EMPLOYEES WHERE FIRST NAME LIKE ‘$enS$’;

The above query will return all those employees whose first name contains the characters en.
Note that this character set may appear anywhere in the name of the employees.

3. In SQL Worksheet, enter the following SQL query to retrieve the rows in which the last
name of employee is similar to Olsen and Olson. In these names, the first two and the last

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-24 Learning Oracle 12c: A PL/SQL Approach

one character will remain the same. This can be done by using the underscore (_) with the
LIKE operator.

SELECT FIRST NAME, LAST NAME, SALARY, JOB ID, COMMISSION PCT,
HIRE DATE FROM EMPLOYEES WHERE LAST NAME LIKE ‘Ol n';

In the above example, the underscore sign (_) used twice between Ol and s in the LIKE
operator represents any possible two characters that might appear between Ol and s.
The output of the above query is shown in Figure 3-22.

Worksheet Query Builder

SELECT FIRST NAME, LAST HNAME, SALARY, JOE_ID, COMMISSION PCT, HIFRE_DATE FROM EMPLOYEES
VHERE L453T NAME LIKE '0Ol__n':

..
[l seript output x| [P Query Result X
& B 8 B soL | Al Rows Fetched: 2in 0.001 seconds
FIRST_NAME [ 1asT_name [ saiary |§ o0 |§ commission PCT || HIRE DATE
1 Christopher Olsen 2000 58 REP 0.2 30-03-0&
113 0laon 2100 ST_CLERK {null) 10-04-07

Figure 3-22 Query showing the use of the (_) underscore with the LIKE operator

BETWEEN and NOT BETWEEN Operators
The BETWEEN operator is used in the WHERE clause to select a range of data between two
values or expressions. The syntax for using the BETWEEN operator is as follows:

SELECT Columnl, ColumnZ........eeee...
FROM Table
WHERE Column Name BETWEEN Valuel AND Value?2;

In the above syntax, BETWEEN is a keyword. Valuel and Value2 are the start and end values
respectively. Note that the start value Valuel should always be less than the end value Value2.

The above SQL statement will return the records where Column_Name is within the range of
Valuel and Value2. The BETWEEN operator can be used in any valid SQL statement such as
SELECT, INSERT, UPDATE, or DELETE.

For example:

In SQL Worksheet, enter the following SQL query to retrieve the rows from the EMPLOYEES
table having employee id between 190 and 200:

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”,
SALARY,JOB ID,HIRE DATE FROM EMPLOYEES
WHERE EMPLOYEE ID BETWEEN 190 AND 200;

The above query will return the details of employees having employee id between 190 and 200,
as shown in Figure 3-23.



Retrieving Data in SQL

3-25

Worksheet Query Builder

SELECT EMPLOYEE_ID, FIRST NAME ||

' || LAST NAME "ENAME"™,
SALARY, JOE_ID,HIRE DATE FROM EMPLOYEES WHERE EMPLOYEE ID BETWEEH 190 RHD =00;

-~

Q Script Output % D Query Result =

@ B, 0 3} 50U | AlRows Fetched: 11in 0.025 seconds

EMPLOYEE_ID |[§ ENAME [@ saary|§ 108D ([ HRE DATE
1 190 Timothy Gates 2900 SH_CLERK 11-07-06
2 191 Randall Perkins 2500 5H_CLERK 19-12-07
3 192 Sarah Bell 4000 5H_CLERK 04-02-04
4 193 Britney Everett 3900 5H_CLERK 03-03-05
5 194 Samuel McCain 3200 SH_CLERK 01-07-06
& 195 Vance Jones 2800 SH_CLEEK 17-03-07
7 196 Alana Welsh 3100 SH_CLERK 24-04-06
8 197 Hevin Feeney 3000 SH_CLERK 23-05-06
E 198 Donald OConnell 2600 SH_CLERK 21-06-07
10 199 Douglas Grant 2600 SH_CLERK 13-01-08
1 200 Jennifer Whalen 4400 1D RSST 17-09-03

Figure 3-23 Query showing the use of the BETWEEN operator

The following example will illustrate the use of the BETWEEN operator with the DATE data type:

SELECT EMPLOYEE ID, FIRST NAME ||
SALARY, JOB ID,HIRE DATE FROM EMPLOYEES
WHERE HIRE DATE BETWEEN TO DATE (‘'25/09/2005',
AND TO DATE (‘'25/01/2006’, ‘dd/mm/yy’);

o

LAST NAME “ENAME”,

‘dd/mm/yy’)

The preceding query will return all details of employees having hire date between Sept 25, 2005

and Jan 25, 2006, as shown in Figure 3-24.

'dd/un/yy') RHD TO_DATE('Z5/01/2006', 'dd/mw/yy');

Worksheet Query Builder
SELECT EMPLOYEE_ID, FIRST HAME || ' ' || LAST _NAME "ENAME", SALARY,J0E_ID,HIFE DATE FROM EMPLOYEES
VHERE HIRE DATE BETWEEN TO DATE('25/09/2005',
. 4
QScriptOutput x bQuery Result *
a E G& @ SQL | All Rows Fetched: 11in 0.007 seconds
EMPLOYEE_ID [ ENAME |8 saarv|@ o8 | HRe DATE
1 103 Alexander Hunold 9000 IT_PROG 03-01-08
2 110 John Chen 8200 FI_ACCOUNT 28-09-05
3 111 Ismael Sciarra 7700 FI_ACCOUNT 30-09-05
4 116 5helli Baida 2900 PU_CLERK  24-12-05
5 123 Shanta Vollman 6500 5T_MAN 10-10-035
[ 130 Mozhe Atkinson 2800 5T_CLERK  30-10-05
7 138 Stephen Stiles 3200 5T_CLERK 26-10-05
8 160 Louise Doran 7500 5& REFP 15-12-05
9 162 Clara Vishney 10500 5 EEF 11-11-05
10 170 Tayler Fox 9600 5& REP 24-01-08
11 180 Winston Taylor 3200 5H CLERK 24-01-06

Figure 3-24 Query showing the use of the BETWEEN operator with the DATE data type

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



3-26 Learning Oracle 12c: A PL/SQL Approach

The above SQL statement is equivalent to the following SQL statement:

SELECT EMPLOYEE ID, FIRST NAME || 'Y ' || LAST NAME "“ENAME”,
SALARY,JOB ID,HIRE DATE FROM EMPLOYEES

WHERE HIRE DATE >= TO DATE(‘'25/09/2005’, ‘dd/mm/yy’)

AND HIRE DATE <= TO DATE(‘25/01/2006’, ‘dd/mm/yy’);

NOT BETWEEN

You can combine the BETWEEN operator with the NOT operator. The NOT BETWEEN
operator is used to select a range of data that does not exist between the two given values or
expressions.

For example:
SELECT EMPLOYEE_ID, FIRST_NAME A LAST_NAME “ENAME”,
SALARY, JOB_ID, HIRE_DATE FROM EMPLOYEES

WHERE EMPLOYEE ID NOT BETWEEN 105 AND 201;

The above query will return all details of those employees whose EMPLOYEE_ID is not between
105 and 201, as shown in Figure 3-25.

Worksheet Query Builder

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME "ENAME", SALARY,JOE_ID,HIFE_DATE
FROM EMPLOYEES WHERE EMPLOYEE_ID HOT BETWEEH 105 AHD 201:

o,
QScript Cutput X DQuery... x
| 3 E‘J Elﬁ @ SQL | All Rows Fetched: 10 in 0.003 seconds

EMPLOYEE_ID [ ENAME (@ saary | 0B | HIRE_DATE
1 100 Steven King 2400020 PRES  17-06-03
2 101 Neena Kochhar 17000 &D_VP 21-09-05
3 102 Lex De Haan 17000 AD_VE 13-01-01
4 103 Rlexander Hunold 9000 IT_PROG  03-01-06
5 104 Bruce Ernst 6000 TT_PROG  21-05-07
6 202 Pat Fay 6000 MK REP  17-08-05
7 203 Suszan Mavris 6500 HE_REP 07-06-02
8 204 Hermann Baer 10000 BR_REP  07-06-02
9 205 Shelley Higgins 12008 2C_MGR  07-06-02
10 206William Gietz £300 AC_ACCOUNT 07-06-02

Figure 3-25 Query showing the use of the NOT BETWEEN operator

The above query can be also written as:

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

SELECT EMPLOYEE ID, FIRST NAME || ' '
SALARY,JOB ID,HIRE DATE FROM EMPLOYEES
WHERE EMPLOYEE ID < 105 OR EMPLOYEE ID > 201;

| LAST NAME “ENAME”,



Retrieving Data in SQL 3-27

IN and NOT IN Operators
The IN operator is used to compare a value with each value in a list or returned by a query. The
syntax for using the IN operator is as follows:

SELECT Columnl, ColumnZ.........eeee... FROM Table
WHERE Column Name IN (Valuel, Value2, Value3,... Value n|
Select statement);

The above SQL statement will return all those records in which Column_Name is Valuel,
Value2, Value3, ....... Value_n. The values in the parenthesis can be one or more, with each
value separated by a comma. The values can be characters or numerical. The IN operator can
be used with any valid SQL statement: SELECT, INSERT, UPDATE, or DELETE.

For example:

In SQL Worksheet, enter the following query to retrieve details of those employees whose
employee numbers are 190, 195, and 200.

SELECT EMPLOYEE ID, FIRST NAME || ' ’ || LAST NAME "“ENAME”,
SALARY,JOB ID,HIRE DATE, MANAGER ID FROM EMPLOYEES
WHERE EMPLOYEE ID IN(190, 195, 200);

The list of values enclosed in the parenthesis is called an inlist. The above query has an inlist
with three values (190, 195, 200). The above query will return the details of those employees
whose employee number is same as in the inlist, as shown in Figure 3-26.

Worksheet Query Builder

SELECT EMPLOYEE_ID, FIR3ST NAME || ' ' || LAST NAME "ENAME™,SALARY,JOE_ID,HIFE_DATE,
MANAGER ID FROM EMPLOYEES WHERE EMPLOYEE_ID IM(150, 1595, 200);

. 4
= script Output x| [P Query Result
# 5 @9 3% soL | AlRows Fetched: 3in 0.023 seconds

EMPLOYEE DD [[§ ENAME @ saary | 080 | HIRe_DATE [ MANAGER_ID
1 190 Timothy Gates 2900 SH_CLERK 11-07-06 122
2 195 Vance Jones 2800 SH_CLERK 17-03-07 123
3 200 Jennifer Whalen 4400AD_ASST 17-08-03 101

Figure 3-26 Query showing the use of the IN operator

The following example will illustrate the use of the IN operator with string values in the inlist.

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”,
SALARY, JOB ID, HIRE DATE, MANAGER ID FROM EMPLOYEES
WHERE JOB_ID IN(‘'AC_ACCOUNT’, ‘AD VP');

The above query will list the names of all employees having AC_ACCOUNT and AD_VP as
their JOB_ID, as shown in Figure 3-27. In each of these queries, the IN operator has been used
to select the data based on multiple constant values.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



t www.cadcim.com

on visi

Evaluation Copy. Do not reproduce. For informat

3-28 Learning Oracle 12c: A PL/SQL Approach

Worksheet Query Builder

SELECT EMPLOYEE_ID, FIRST NAME || ' ' || LAST NAME "ENAME™,SALARY,JOE_ID ,HIRE DATE,
MANAGER_ID FROM EMPLOYEES WHERE JOE_ID IHW('AC ACCOUNT', 'AD _¥WP'):

. 4
Q Seript Output X D Query Result =
@ B 0 3% 5qL | Al Rows Fetched: 3in 0,006 seconds

EMPLOYEE ID [[§ ENAME (@ sawary | 0B | HRe DATE [ mManacER_ID
206William Gietz 8300 AC_ACCOUNT 07-06-02 205

2 101 Neena Kochhar 17000 AD VE 21-09-05 100
3 102 Lex De Hazn 17000 AD_VP 13-01-01 100

Figure 3-27 Query showing the use of the IN operator with string inlist

NOT IN
You can combine the IN operator with the NOT operator. The NOT IN operator works just
opposite to the IN operator. The syntax for using the NOT IN operator is as follows:

SELECT Columnl, ColumnZ........eeee... FROM Table
WHERE Column Name NOT IN (Valuel, Value2, Value3,....... ) ;

For example:

SELECT EMPLOYEE ID, FIRST NAME || ‘ ’ || LAST NAME “ENAME”, SALARY,
JOB ID, HIRE DATE, MANAGER ID FROM EMPLOYEES
WHERE DEPARTMENT ID NOT IN (30, 50, 60, 80, 100);

The above query will return the employee details those employees whose department number
is not 30, 50, 60, 80, and 100 from the EMPLOYEES table. The output of the above query is
shown in Figure 3-28.

Worksheet Query Builder

SELECT EMPLOYEE_ID, FIRST NAME || ' ' || LAST NAME "ENAME"™, SALARY,JOE_ID, HIRE DATE,
MANAGEE_ID FROM EMPLOYEEZ WHERE DEPARTMENT ID HOT IH (30, 50,60, &0, 100):

.. 4
QSD’ipt Output * DQuery... x
@ B 9 B} 50l | AlRows Fetched: 10 in 0.006 seconds

EMPLOYEE D |[§ ENAME [0 saary|§ 0B [§ HIREDATE|f ManAcER D
1 100 Steven King 240002D PRES  17-06-03 {mi11)
2 101 Neena Kochhar 17000 2D VP 21-09-05 100
3 102 Lex De Haan 17000 2D VP 13-01-01 100
4 200 Jennifer Whalen 44002D ASST  17-09-03 101
5 201 Michael Hartstein  13000MK MAN  17-02-04 100
6 202 Pat Fay 6000MK REP  17-08-05 201
7 203 Susan Mavris 6500HR REP  07-06-02 101
8 204 Hermann Baer 10000 FR_REP  07-06-02 101
3 205 Shelley Higgins 12008 AC MGR  07-06-02 101
10 206 William Gietz £300 AC_ACCOUNT 07-06-02 205

Figure 3-28 Query showing the use of the NOT IN operator with string inlist



Retrieving Data in SQL

EXISTS and NOT EXISTS Operators

The EXISTS operator is used to check the existence of those rows whose values match with the
subquery. The subquery can be a query on the same or different tables, or a combination of both
tables used in main query. When a subquery returns a single value, it means that the operator

has achieved the target. The syntax for using the EXISTS operator is as follows:

SELECT Column Name
FROM Tablel
WHERE EXISTS (SELECT Column Name FROM TableZ2);

The EXISTS operator can be used with any valid SQL statement: SELECT, INSERT, UPDATE,
or DELETE. In most cases, this type of query is used with a standard join to improve performance.
The EXISTS operator typically provides better performance than the IN operator.

Note
You will learn about subqueries later in this chapter.

For example:
SELECT EMPLOYEE ID, FIRST NAME, LAST NAME, SALARY, JOB ID,
HIRE DATE, DEPARTMENT ID FROM EMPLOYEES E WHERE EXTISTS
(SELECT DEPARTMENT ID FROM DEPARTMENTS D
WHERE E.DEPARTMENT ID =60);

The output of the above query is shown in Figure 3-29:

Worksheet Query Builder

SELECT EMPLOYEE_ID, FIRST NAME, LAST NAME, 3ALARY,J0E_ID,HIFE DATE, DEPARTMENT_ ID
FROM EMPLOYEES E WHERE EXISTS (SELECT DEPARTMENT ID FROM DEPARTMENTS D
VHERE E.DEPARTHMENT ID =£0);

-

Q Script Qutput X D Query Result *
o E] @[ﬂ @ SOL | All Rows Fetched: 5in 0.006 seconds

evpLOvEE D [ FirsT_name |[§ LasT_name @ sauary [fl JoB0 [§ HRe_DATE | DEPARTMENT ID

1 103Alexander  Hunold 9000 IT_PROG 03-01-05
2 104 Bruce Ernst 6000 IT_PROG 21-05-07
3 105 David Bustin 4800 IT_PROG 25-06-05
4 106 Valli Fateballa 4800 IT_PROG 0S-02-05
5 107 Diana Lorentz 4200 IT_PROG 07-02-07
Figure 3-29 Query showing the use of the EXISTS operator
NOT EXISTS

You can also combine the EXISTS operator with the NOT statement. The NOT EXISTS
operator works just opposite to the EXISTS operator. The syntax for using the NOT EXISTS

operator is as follows:

SELECT Column Name FROM Tablel
WHERE NOT EXISTS (SELECT Column Name FROM TableZ2) ;

a0
a0
a0
a0
a0

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-30 Learning Oracle 12c: A PL/SQL Approach

For example:

SELECT EMPLOYEE ID, FIRST NAME, LAST NAME, SALARY, JOB ID,
HIRE DATE, DEPARTMENT ID FROM EMPLOYEES E WHERE NOT EXISTS
(SELECT DEPARTMENT ID FROM DEPARTMENTS D

WHERE E.DEPARTMENT ID IN (30, 50, 60, 80, 100);

The above query will return the number and name of the departments from the DEPARTMENTS
table, in which there are no records of DEPARTMENT_ID in the EMPLOYEES table. The
output of the above query is shown in Figure 3-30.

Warksheet Query Builder
SELECT EMPLOYEE ID, FIRST NAME, LAST NAME, SALARY,J0B_ID, HIFE DATE, DEPARTHMENT ID

FROM EMPLOYEES E WHERE HOT EXISTS (SELECT DEPARTMENT ID FROM DEPARTMENTS D
VHERE E.DEPARTMENT ID TH (30, 50,60, &0, 100)):

W
!;lScript output * |[B*Query Result *
a E Eﬂ @ SQL | All Rows Fetched: 11in 0.009 seconds
EMPLOVEE_ID || FIRST_NaME ] LasT Name [ salarv|§ 108D [ HRE_DATE || DEPARTMENT_ID

1 100 Steven King 24000 AD_FRES 17-06-03 a0
2 101 Neena Kochhar 17000 AD VF 21-0%-05 a0
3 102 Lex De Haan 17000 AD VF 13-01-01 a0
4 178 Kimberely Grant 7000 5A REF 24-05-07 (null)
5 200 Jennifer Whalen 4400 AD A55T 17-09-03 10
[ 201 Michael Hartstein 13000 MK_MRN 17-02-04 20
7 202 Pat Fay 6000 MK REF 17-0&-05 20
8 203 Susan Mavris 6500 HR_REF 07-06-02 40
9 204 Hermann Baer 10000 FR_REF 07-06-02 70
10 205 Shelley Higgins 12008 AC_MGR 07-06-02 110
I 11 206 William Gietz #8300 AC ACCOUNT 07-06-02 110

Figure 3-30 Query showing the use of the NOT EXISTS operator

IS NULL and IS NOT NULL Operators
The IS NULL and IS NOT NULL operators are used to find the NULL and not NULL values
respectively. The IS NULL operator returns TRUE, when the value is NULL; and FALSE, when
the value is not NULL. The IS NOT NULL operator returns TRUE, when the value is not
NULL; and FALSE, when the value is NULL.
The following example will illustrate the use of the IS NULL operator:

SELECT * FROM EMPLOYEES WHERE COMMISSION PCT IS NULL;

The above SQL query will return all records from the EMPLOYEES table where
COMMISSION_PCT contains a NULL value.

The following example will illustrate the use of the IS NOT NULL operator:

SELECT * FROM EMPLOYEES WHERE COMMISSION PCT IS NOT NULL;



Retrieving Data in SQL 3-31

The above SQL query will return all records from the EMPLOYEES table where
COMMISSION_PCT does not contain a NULL value.

Set Operators
Sometimes, you may need to combine the results of two or more SELECT statements. Oracle
database provides the set operators to meet this requirement.

The set operators are used to combine the data of similar type from more than one query. Oracle
SQL supports the following four set operators:

UNION ALL
UNION
MINUS
INTERSECT

00 N0 =

The SQL statements containing these operators are referred as compound queries and each
SELECT statement in a compound query is referred to as a composite query. You can combine
two SELECT statements into a compound query by a set operator. This is possible only when
the SELECT statement satisfies the following two conditions:

1. The result sets of both the queries must have same number of columns.

2. The data type of each column in the second result set must match the data type of its
corresponding column in the first result set.

These conditions are also referred to as union compatibility conditions. The term union
compatibility is used here even though these conditions apply to other set operations as well.
The set operations are often called as vertical joins because the result is formed by combining
the data from two or more SELECT statements based on columns instead of rows. The syntax
of a query involving a set operator is as follows:

<component query>
{UNION | UNION ALL
| MINUS | INTERSECT}
<component query>

The keywords UNION, UNION ALL, MINUS, and INTERSECT are set operators. You can
have more than two component queries in a composite query, but the set operators used in the
composite query will always be one less than the number of components used.

The following sections discuss syntax, examples, rules, and restrictions for the four set operators.

UNION ALL Operator

This operator combines the results of two or more queries into a single result set. This
operation returns the rows that are retrieved by either of the queries. The UNION ALL operator
allows the duplicate rows in the result set.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



t www.cadcim.com

on visi

Evaluation Copy. Do not reproduce. For informat

3-32 Learning Oracle 12c: A PL/SQL Approach

The UNION ALL operator is used when you want duplicate rows to occur in the result set. The
syntax for using UNION ALL is as follows:

SELECT statement
UNION ALL
SELECT statement;

In the above syntax, the UNION ALL operator will join the result set of the two SELECT
statements.

For example:

SELECT JOB ID FROM EMPLOYEES
UNION ALL
SELECT JOB ID FROM JOBS;

The above example generates a list of job ids from the EMPLOYEES and JOBS tables.

UNION Operator

This operator combines the results of two or more queries into a single result set. The single
result set consists of distinct rows returned by all queries. The UNION operator returns the
distinct rows retrieved by either of the queries.

Unlike the UNION ALL operator, the UNION operator eliminates duplicate rows from the
result set. The syntax for using the UNION operator is as follows:

SELECT statement
UNION
SELECT statement;

In the above syntax, the UNION operator joins the result sets of two SELECT statements and
eliminates duplicate rows.

For example:

SELECT JOB ID FROM EMPLOYEES
UNION
SELECT JOB ID FROM JOBS;

The above example will generate a list of distinct job ids from the EMPLOYEES and JOBS
tables. The UNION operator returns only the distinct rows from either of the queries.

The following example will illustrate the use of the UNION operator with the ORDER BY clause:

SELECT EMPLOYEE ID, JOB ID, DEPARTMENT ID FROM EMPLOYEES
UNION

SELECT EMPLOYEE ID, JOB ID, DEPARTMENT ID FROM JOB HISTORY
ORDER BY 2;



Retrieving Data in SQL 3-33

MINUS Operator

The MINUS operator is used to return the difference between two sets. This operator returns
only those rows that exist in the first query but not in the second query. The syntax for using
the MINUS operator is as follows:

SELECT statement
MINUS
SELECT statement;

In the above syntax, the MINUS operator joins the result set of the two SELECT statements and
returns only the rows that are not in the second SELECT statement.

For example:

SELECT EMPLOYEE ID, JOB ID, DEPARTMENT ID FROM EMPLOYEES

MINUS
SELECT EMPLOYEE ID, JOB ID, DEPARTMENT ID FROM JOB HISTORY
ORDER BY 2;

The above example will generate a list of employees which are current in job. The above query
will return EMPLOYEE_ID, JOB_ID, and DEPARTMENT_ID from the EMPLOYEES table
which are not in the JOB_HISTORY table.

INTERSECT Operator
The INTERSECT operator is used to return all distinct rows returned by the different SELECT
queries. The syntax for using the INTERSECT operator is as follows:

SELECT statement
INTERSECT
SELECT statement;

In the above syntax, the INTERSECT operator joins the result set of the two SELECT
statements and then returns the distinct result set retrieved by both SELECT statements.

For example:

SELECT DEPARTMENT ID FROM DEPARTMENTS
INTERSECT
SELECT DEPARTMENT ID FROM EMPLOYEES;

The above example will generate a list of distinct department numbers from the DEPARTMENTS
and EMPLOYEES tables. The INTERSECT operator returns only the distinct rows from either
of the queries.

The following example will illustrate the use of the INTERSECT operator with the ORDER
BY clause:

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-34 Learning Oracle 12c: A PL/SQL Approach

SELECT DEPARTMENT ID FROM DEPARTMENTS
INTERSECT

SELECT DEPARTMENT ID FROM EMPLOYEES
ORDER BY 1;

Rules and Restrictions on Set Operations
The following list summarizes some simple rules, restrictions, and notes on Set operations:

1.

Set operators are not applied on the columns of the data type BLOB, CLOB, BFILE, and
VARRAY. However, they can be applied on the nested table columns.

The UNION, INTERSECT, and MINUS operators are not valid on the columns having
the data type LONG.

Set operators are not used with those SELECT statements that contain the expression of
the TABLE collection.

The FOR UPDATE clause cannot be used with the set operators.
The number and size of the columns in the SELECT list of the component queries are

limited by the block size of the database. The total bytes of the selected columns cannot
exceed one database block.

Operator Precedence

Operator precedence refers to the order in which Oracle evaluates different operators within the
same expression. If an expression contains multiple operators, Oracle will evaluate the higher
precedence operators first before evaluating the lower precedence operators. In case of operators
having equal precedence, Oracle evaluates them from left to right within an expression.

Table 3-2 lists the levels of operator precedence from high to low. Operators listed on the same
line have the same precedence.

Table 3-2 The SQL operator precedence

Operator Operation

+, - identity, negation (Unary operator)
*/ multiplication, division

+, -, || addition, subtraction, concatenation
=, 1=, <, >, <=, >=, LIKE, [ comparison

BETWEEN, IN

NOT negation

AND logical AND operation

OR logical OR operation




Retrieving Data in SQL 3-35

For example:
Consider the following expression:
1+2%3

In the above expression, Oracle will first multiply 2 by 3 and then add the result to 1 because
multiplication has higher precedence than addition.

You can use the parentheses in the above expression to override operator precedence, as given
below:

(1+2)*3

In this expression, Oracle will evaluate the expression inside the parentheses first, then evaluate
the expressions outside the parentheses.

CASE EXPRESSION

CASE expression is used to perform multiple condition comparison within a single statement.
It is similar to the IFFTHEN-ELSE statement. It evaluates from top to bottom and if a condition
is true, the associated THEN clause is executed and the process exits the CASE expression by
executing the END statement. If no condition returns true, it executes the ELSE part.

The syntax for using the CASE expression is as:

CASE [ expression ]
WHEN condition 1 THEN result 1
WHEN condition 2 THEN result 2

WHEN condition n THEN result n
ELSE result
END

The keywords and parameters used in the above syntax are explained next.

expression
It is optional and its value is compared with the list of conditions (ie: condition_1, condition_2,
... condition_n).

condition_1, condition_2, ... condition_n

These conditions are evaluated in the order they are listed and all must be of same data type.
Once a condition is evaluated to true, the CASE expression returns the result and the rest of
the conditions are not evaluated further.

result_1, result_2, ... result_n
These are the values returned once the condition is found to be true. All the results must have
the same data type.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-36

Learning Oracle 12c: A PL/SQL Approach

For example:

You could use the CASE statement in a SQL statement as follows:

SELECT EMPLOYEE ID, FIRST NAME|| ‘ ’ ||LAST NAME, SALARY,
CASE JOB_ID

WHEN

WHEN

WHEN

WHEN

ELSE
END

‘AD PRES’ THEN ‘President’

‘AC_MGR’ THEN ‘Accounting Manager’

‘AD VP’ THEN ‘Administration Vice President’
‘FI MGR’ THEN ‘Finance Manager’

‘ASSISTANT'

FROM EMPLOYEES;

You can also write the above SQL statement using the CASE statement as follows:

SELECT EMPLOYEE ID, FIRST NAME|| ' ' ||[LAST NAME, SALARY,
CASE
WHEN JOB ID='AD PRES’ THEN ‘President’

WHEN

WHEN

WHEN

ELSE
END

JOB_ID="AC MGR’ THEN ‘Accounting Manager’

JOB _ID="AD VP’ THEN ‘Administration Vice President’
JOB ID='"FI MGR’ THEN ‘Finance Manager’

‘ASSISTANT'

FROM EMPLOYEES;

In the above example, if no condition evaluates to true, then the CASE expression will return the
value associated with the ELSE clause. If the ELSE clause is omitted and no condition evaluates
to true, the CASE expression will return NULL.

SQL CLAUSES

The following are the clauses used in Oracle to retrieve the desired data:

ORDER BY Clause

The ORDER BY clause allows you to arrange the data retrieved from a table in a sorted order.
The rows retrieved are sorted either in the ascending or in the descending order.

The syntax for using the ORDER BY clause is as follows:

SELECT Column name FROM Table name
WHERE Condition
ORDER BY columns ASC/DESC;

In the above syntax, ORDER BY is the keyword and Column_name is the name of column
of the table Table_name. The result will be sorted depending upon the column or columns
specified in the ORDER BY clause. The keyword ASC indicates that the result set will be sorted
in the ascending order and DESC indicates that the result set will be sorted in the descending



Retrieving Data in SQL 3-37

order. If the ASC or DESC value is omitted, Oracle will assume the ascending order as the
default value.

For example:

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”,
SALARY, JOB ID FROM EMPLOYEES
WHERE JOB ID='IT PROG’ ORDER BY ENAME;

In the above example, the query will return the names of the employees whose JOB_ID is
IT_PROG. As discussed earlier, if you omit the keyword ASC/DESC, Oracle will take the default
value as ASC and, therefore, the records will be sorted by the ENAME field in ascending order,
as shown in Figure 3-31.

Worksheet Query Builder

SELECT EMPLOYEE_ID, FIRST NAME || ' ' || LA3T_NAME "ENAME™, SALARY, JOE_ID
FROM EMPLOYEES WHERE JOE_ID='IT FROG' ORDER BY ENAME:

% 4
DQuery Result *
& B @8 E; soL | Al Rows Fetched: 5in 0.019 seconds

EMPLOYEE_ID [[§ ENAME |8 saarr[g 08|
1 103 Alexander Hunold 9000 IT_EROG
2 104 Bruce Ernst 000 IT_PROG
3 105 David Rustin 4800 IT_PROG
4 107 Diana Lorentz 4200 IT_PROG
5 106Valli Pataballa 4800 IT_FROG

Figure 3-31 Sorting records by ENAME

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”,
SALARY, JOB ID FROM EMPLOYEES
WHERE JOB ID='IT PROG’ ORDER BY ENAME DESC;

The above query will return the names of employees, whose JOB_ID is IT_PROG. Here, the
records will be sorted by the ENAME field in the descending order, as shown in Figure 3-32.

Worksheet Query Builder

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST WAME "ENAME™, 3ALARY, JOBE_ID
FROM EMPLOYEES YHERE JOBE_ID='IT PROG' ORDER BY ENAME DESC:

%
[ Query Result

I 3 E Eﬂ % SQL | All Rows Fetched: 5in 0,002 seconds

EMPLOYEE_ID [ ENAME [@ saary|g 08D |
1 106Valli Pataballa 4800 IT_PROG
2 107 Diana Lorentz 4200 IT_EROG
3 105 David Bustin 4800 IT_PROG
4 104 Bruce Ernsc 6000 IT_PROG
5 103 Rlexander Hunold 9000 IT_FROG

Figure 3-32 Sorting records by ENAME (DESC)

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-38 Learning Oracle 12c: A PL/SQL Approach

You can also sort records by position of the fields in the result set, where the first field is on
position 1 and the next field is on position 2, and so on.

For example, the query

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”, SALARY,
JOB ID FROM EMPLOYEES WHERE JOB ID=‘IT PROG’ ORDER BY 1 DESC;

and

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”, SALARY,
JOB ID FROM EMPLOYEES WHERE JOB ID=‘IT PROG’ ORDER BY 3 DESC;

sort the records by the position of fields.

The above queries will return all the records sorted by the position of the field in descending order.
The first query will sort the records based on the EMPLOYEE_ID field because EMPLOYEE_ID
is on position 1 in the query. In the second query, the records will be sorted by the SALARY
field because SALARY is on position 3 in the query. The output of the second query is shown
in Figure 3-33.

Worksheet Query Builder

SELECT EMFLOYEE _ID, FIRST HAME || ' ' || LAST NAME "ENAME', 3ALARY, JOE_ID
FROM EMPLOYEES YHERE JOE_ID='IT PROG' ORDER BY 3 DESC:

.
D Query Result =

& 5, &) Bk soL | Al Rows Fetched: 5in 0.002 seconds

EMPLOYEE_ID [] ENAME (@ saary [§ 08D
1 103 Alexander Hunold 5000 IT_EROG
2 104 Bruce Ernst 6000 IT_EROG
3 105 David Austin 4800 IT_PROG
4 106Valli Pataballa 4800 IT_PROG
3 107 Diana Lorentz 4200 IT_FROG

Figure 3-33 Sorting records by the position field

GROUP BY Clause
The GROUP BY clause is used in the SELECT statement to collect data from multiple records

and group the results that have matching values for one or more columns. The syntax for using
the GROUP BY clause is as follows:

SELECT Columnl, Column2, ..., Column-n
FROM Table name WHERE Condition
GROUP BY Columnl, Column2, ..., Column-n;

In the above syntax, the GROUP BY is a keyword and Columnl, Column2, and Column-n are
the names of columns of the table Table_name. You can group the result set by one or more
columns.



Retrieving Data in SQL 3-39

You can also use the aggregate function in the SELECT statement with the GROUP BY
clause. The syntax for using the GROUP BY clause while using the aggregate function in the
SELECT statement is as follows:

SELECT Columnl, ColumnZ, ..., Column-n, aggregate Function (Expression)
FROM Table name WHERE Condition
GROUP BY Columnl, Column2, ..., Column-n;

In the above syntax, the aggregate_Function can be any aggregate function such as SUM,
COUNT, MIN, or MAX. These aggregate functions will be discussed in the later chapter.

Given below are some examples showing the use of the GROUP BY clause with different
aggregate functions.

The following example will illustrate the use of the GROUP BY clause with the SUM function:
SELECT JOB ID, SUM(SALARY) FROM EMPLOYEES GROUP BY JOB ID;
In the above example, the SQL query will return the job id of the employees along with the

total salary (for example, total salary of the employees having job id PU_CLERK), as shown in
Figure 3-34.

Worksheet Query Builder
SELECT J0B_ID, SUM(SALARY)
FROM EMPLOYEES GROUP BY JOB_ID:
. 4
bQuery Result *
@ E 9 B} 5oL | AlRows Fetched: 19 in 0,007 seconds
10810 | sUM(SALARY) |
1 IT_PROG 28800
2 BT MGR 12008
3 BC_ACCOUNT 300
4 5T_MRZN 36400
5 PU_MRN 11000
6 BD RSST 4400
7RAD VP 34000
8 5H_CLERK 64300
9 FI_ACCOUNT 39600
10 FI_MGR 12008
11 FU_CLEREK 13800
12 5B MRN 81000
13 ME_MAN 13000
14 PR_REP 10000
15 D PRES 24000
16 5K REP 250500
17 MK REP &000
18 5T CLERK 55700
19 HR_REF 4500

Figure 3-34 The GROUP BY clause with
the SUM function

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



t www.cadcim.com

on visi

Evaluation Copy. Do not reproduce. For informat

3-40 Learning Oracle 12c: A PL/SQL Approach

The following example will illustrate the use of the GROUP BY clause with the COUNT function.

SELECT JOB ID, COUNT (*)
FROM EMPLOYEES
GROUP BY JOB 1ID;

The above SQL query will return the job id of employees with the total number of employees
in each job id. Figure 3-35 shows the output of this query.

Worksheet Query Builder

SELECT JOE_ID, COUHT (*)
FROM EMPLOYEES GROUP BY JOE_ID:

e 4

[ Query Result =
| 3 E‘.l E’[ﬂ @ SGL | All Rows Fetched: 19 in 0,005 seconds
30810 [ count(s |
1 BT RCCOUNT
2 AC_MGR
3 AD ASST
4 AD FRES
5 AD VP
6 FI_RCCOUNT
7 FI_MGR
8 HR_REP
8 IT_PROG
10 MK_MAN
11 MK_REE
12 FR_REF
13 PU_CLERK
14 PU_MAN
15 5B MAN
16 5A REP
17 5H _CLERK
18 5T_CLERK
19 ST_MAN

[ T B S U R T TR S ST B S SR S

[ T B )
[l T e s |

(3]

Figure 3-35 The GROUP BY clause with
the COUNT function
The following example will illustrate the use of the GROUP BY clause with the MIN function:
SELECT JOB ID, MIN (SALARY)
FROM EMPLOYEES

GROUP BY JOB 1ID;

In the above example, the SQL query will return the job id of employees with the minimum salary in
each job id from the EMPLOYEES table.

The following example will illustrate the use of the GROUP BY clause with the MAX function:



Retrieving Data in SQL 3-41

SELECT JOB_ID, MAX (SALARY)
FROM EMPLOYEES
GROUP BY JOB 1ID;

In the above example, the SQL query will return the job description of the employees with
the maximum salary in each job id from the EMPLOYEES table.

HAVING Clause

The HAVING clause is used in the SELECT statement to filter the data returned by the GROUP
BY clause. The HAVING clause is similar to the WHERE clause and it is evaluated once Oracle
has evaluated the grouped values. The syntax for using the HAVING clause is as follows:

SELECT Columnl, Column2, ..... , Column-n
FROM Tables

WHERE Condition

GROUP BY Columnl, Column2, ...... , Column n
HAVING SearchCondition;

In the above syntax, the SearchCondition is a boolean expression, and it can contain only
grouping columns that means the columns that are part of the aggregate expression and the
columns that are part of a subquery.

For example:
SELECT JOB_ID, SUM(SALARY)
FROM EMPLOYEES GROUP BY JOB ID

HAVING SUM(SALARY) >= 15000;

The above SQL query will return the job ids and total salary of the job ids having sum of salaries
greater or equal to 15000. The output of the above query is shown in Figure 3-36.

Worksheet Query Builder

SELECT JOB_ID, SUM(3ALLRY) FROM EMPLOYEES
GROUP BY JOE_ID HAVING SUM({SALARY) >= 15000;

..
D-Query Result *
@ B 9 E; 5oL | Al Rows Fetched: 9in 0,002 seconds

10810 B sum(saLARy) |

1 IT_PROG 28800
2 5T _MRN 36400
3D VP 34000
4 5H_CLERK 64300
5 FI_ACCOUNT 39600
6 Sh_MRN el0oo
7 RD_PRES 24000
& Sp_REP 250500
9 5T_CLERK 55700

Figure 3-36 Using of the HAVING clause

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-42 Learning Oracle 12c: A PL/SQL Approach

Consider the following query:

SELECT JOB ID, SUM(SALARY)
FROM EMPLOYEES GROUP BY JOB ID
HAVING EMPLOYEE ID >= 200;

The above query is not valid because EMPLOYEE_ID is not a grouping column, it is not a part
of the aggregate expression, and it does not appear in the subquery. Therefore, this query will
return an error with the message not a GROUP BY expression, as shown in Figure 3-37.

Worksheet Query Builder

SELECT JOB_ID, SUM(3ALLEY) FROM EMPLOYEES
GROUP BY JOE_ID HAVIHG EMPLOYEE ID >= Z00O;

.. 4

hQuery Result *
& & W) 3k 5oL | Executing:SELECT 10B_ID, SUM(SALARY) FROM EMPLOYEES GROUP BY JOB_ID

CRA-00979: not a GROUP BY expression
00973, 00000 - "not a GROUP BY expression”
Cause:

FAction:

Error at Line: 2 Column: 24

Figure 3-37 Invalid use of the HAVING clause

You can also use the aggregate function in the SELECT statement with the HAVING clause.
The syntax for using the HAVING clause with an aggregate function in the SELECT statement
is as follows:

SELECT column name, aggregate function (expression/column name)
FROM Table name

WHERE SearchCondition

GROUP BY column name

HAVING SearchCondition;

In the above syntax, the aggregate_function can be any aggregate function such as SUM,
COUNT, MIN, MAX, and so on.

Some examples showing use of the HAVING clause with the different aggregate functions are
as follows:

The following example will illustrate the use of the HAVING clause with the AVG function:

SELECT JOB ID, AVG (SALARY)
FROM EMPLOYEES

GROUP BY JOB ID

HAVING AVG (SALARY) >= 10000;

In the above SQL query, the AVG function will return the average salary of the employees. The
HAVING clause will filter the results returned by the GROUP BY clause. As a result, this query



Retrieving Data in SQL 3-43

will return those job id’s and their average salary which are greater than or equal to 10000, as
shown in Figure 3-38.

Worksheet Query Builder

SELECT JOBE_ID, AVG(3ALLRY) FROM EMPLOYEES
GROUP BY TOE_ID HAVIHG AVG(3ALARY) >= 10000;

e

[ Query Result x
& 5 W9 E; soL | AlRows Fetched: 8in 0,002 seconds
B o8| AvGEALARY)|

1 AC_MGR 12008
2 PU_MEN 11000
3 D VE 17000
4 FI_MGR 12008
5 SA_MEN 12200
6 MK _MLN 13000
7 PR_REP 10000
8 BD PRES 24000

Figure 3-38 Using the AVG function

The following example will illustrate the use of the HAVING clause with the MAX function:

SELECT DEPARTMENT ID, MAX (SALARY)
FROM EMPLOYEES

GROUP BY DEPARTMENT ID

HAVING AVG (SALARY) >= 8000;

In the above SQL query, the MAX function will return the maximum salary of the employees.
The HAVING clause will filter the results returned by the GROUP BY clause. As a result, this
query will return those department numbers in which the maximum salary of an employee is
greater than 8000, as shown in Figure 3-39.

Worksheet Query Builder

SELECT DEPARTHMENT ID, MAX(3ALLARY) FROM EMPLOYEES
GROUP BY DEPARTMENT IL HAVIHG AV (SALARY) >= S000;

. 4

DQuery... x

# 5, &) Bk sqL | allRows Fetched: 6 in 0.002 seconds
B DEpARTMENT ID [ MAX(SALARY)

1 100 12008
2 an 24000
3 20 13000
4 70 10000
3 110 12008
8 &0 14000

Figure 3-39 Using the HAVING clause with the MAX function

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-44 Learning Oracle 12c: A PL/SQL Approach

The following example will illustrate the use of the HAVING clause with the MIN function:

SELECT DEPARTMENT ID, MIN (SALARY)
FROM EMPLOYEES

GROUP BY DEPARTMENT ID

HAVING MIN (SALARY) >= 8000;

In the above SQL query, the MIN function will return the minimum salary of the employees.
The HAVING clause will filter the results returned by the GROUP BY clause. As a result, this
query will return those department numbers in which minimum salary of an employee is greater
than 8000.

The following example will illustrate the use of the HAVING clause with the SUM function:

SELECT DEPARTMENT ID, SUM(SALARY)
FROM EMPLOYEES

GROUP BY DEPARTMENT ID

HAVING SUM(SALARY) >= 8000;

In the above query, the SUM function will return the total salary of each department. The
HAVING clause will filter the result set and return the department numbers having total salary
greater than 8000.

SUBQUERIES

Query within a query is called a subquery. The statement containing a subquery is called the
parent statement. Subqueries are used to retrieve data from tables and the retrieved data depends
on the value in the table itself. The output of a subquery is the input to the main query and on
the basis of output of the subquery, the result set of whole query is generated.

The syntax for using a subquery is as follows:

SELECT Columnl, Column2, ........... FROM Table name
WHERE Column X operator (SELECT Column Names

FROM Table name

WHERE Search Condition);

In the above syntax, the SELECT statement appearing within parenthesis is a subquery, and the
rest of the query is the main query. The output of the subquery is the input to the main query.
The WHERE clause that appears in the subquery is optional. Here, subquery can return single
or multiple values. Subqueries can be used in the INSERT, UPDATE, and DELETE statements.

For example:

SELECT EMPLOYEE ID, FIRST NAME || ' '’ || LAST NAME “ENAME”, SALARY,
JOB ID, DEPARTMENT ID FROM EMPLOYEES
WHERE SALARY > (SELECT SALARY FROM EMPLOYEES

WHERE FIRST NAME = ‘Clara’);



Retrieving Data in SQL 3-45

In the above query, the inner query will return the salary of the employee named Clara. This
salary will be compared with the outer query and then only those rows will be returned that meet
the condition in the WHERE clause. The output of the above query is shown in Figure 3-40.

Worksheet Query Builder
SELECT EMPLOYEE_ID, FIRST NAME || ' ' || LAST NAME "ENAME"™, 3ALARY, JOE_ID, DEPARTHMENT ID
FROM EMPLOYEES VHERE SALARY > (SELECT SALARY FROM EMPLOYEES WHERE FIRST NAME = 'Clara');
.. 4
DQuery Result =
a E Elﬂ @ SQL | All Rows Fetched: 13in 0.005 seconds
[ EMPLOYEE_}D|E EMAME |E snLnRY|E JOB_JD|E DEPARTMENT _ID
1 100 Steven King 24000 AD_FRES a0
2 101 Heena Hochhar 17000 AD VE 40
3 102 Lex De Haan 17000 AD VP a0
4 108 Nancy Greenberg 12008 FI_MGR 100
5 114 Den Raphaely 11000 FU_MAN 30
[ 145 John Russell 14000 5& MRN an
7 146 Karen PFartners 13500 5K MRN an
8 147 Alberto Errazuriz 12000 5K MRN an
9 148 Gerald Cambrault 11000 5A MAN g0
10 168 Lisa Ozer 11500 54 REF a0
n 174Ellen Abel 11000 5n REF a0
12 201 Michael Hartastein 13000 MK _MRAN 20
13 205 Shelley Higgins 12008 AC_MGR 110

Figure 3-40 Retrieving data using the subquery

Subqueries can be of three types: single-row, multiple-row, and multiple-column subqueries.
These types of subqueries are discussed next.

Single-Row Subqueries
Single-row subqueries return only one row as a result. The operators that can be used with
single-row subqueries are =, >, >=, <, <=, and <>.

Given below is a list of examples that illustrate the use of single-row subqueries in different
conditions.

In order to list the employees who earn less than the average salary in any organization, the
group function AVG must be used to calculate the average salary of employees. However, the
group function cannot be used with the WHERE clause. In such a case, you can use a subquery.

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME “ENAME”, SALARY,
JOB ID, DEPARTMENT ID FROM EMPLOYEES
WHERE SALARY > (SELECT AVG (SALARY) FROM EMPLOYEES

WHERE JOB ID='PU MAN’) ;

In the above example, the main query will return the details of all those employees whose salary
is greater than the average salary. If subquery returns more than one value, the IN operator
must be used. The output of the above query is shown in Figure 3-41.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-46 Learning Oracle 12c: A PL/SQL Approach

Warksheet Query Builder

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME "ENAME™, JALARY, JOBE_ID, DEFARTHMENT ID
FROM EMPLOYEEZ WHERE SALARY > (SELECT AV (3A4LARY) FROM EMPLOYEEZ WHERE JOB_ID='PU _MAN'):

FS. 4

[ Query Result x
I 3 E] @ﬂ @ SOL | All Rows Fetched: 10 in 0.005 seconds

EMPLOYEE_ID [ ENAME [@ saarv|g 1080 |g DEParTMENT D

1 100 Steven King 24000 AD_FRES 50
2 101 Neena Kochhar 17000 AD VP 90
3 102 Lex De Haan 17000 AD VE 50
4 108 Nancy Greenberg 12008 FI_MGR 100
5 145 John Bussell 14000 SA_MAN &0
& 146 Karen Partners 13500 SA_MAN 80
7 147 Alberto Errazuriz 12000 SR_MAN a0
8 168 Lisa Ozer 11500 5&_REP &0
g 201Michael Hartstein 13000 ME MAN 20
10 205 Shelley Higgina 12008 AC_MGR 110

Figure 3-41 Retrieving data using the single-row subquery

The following example will illustrate the use of the MAX function with a subquery:

SELECT E.*, D.DEPARTMENT NAME FROM EMPLOYEES E, DEPARTMENTS D
WHERE E.DEPARTMENT ID = D.DEPARTMENT ID AND
E.SALARY > (SELECT MAX (SALARY) FROM EMPLOYEES

WHERE JOB ID='PU MAN’) ;

In the above example, the main query will return all the fields from the EMPLOYEES table and
only one field called the DEPARTMENT_NAME from the DEPARTMENTS table. The query will
return only those records in which the salary of an employee is greater than the maximum salary
of the employees having job id PU_MAN and have matching values for the DEPARTMENT_ID
column in both the EMPLOYEES and DEPARTMENT tables.

Multiple-Row Subqueries
The subquery that returns multiple rows is called a multiple-row subquery. You need to use the
comparison operators IN, ALL, and ANY to handle the multiple rows returned by the subquery.

The following example will illustrate the use of the IN operator with a subquery:

SELECT * FROM EMPLOYEES
WHERE EMPLOYEE ID IN (SELECT EMPLOYEE ID FROM EMPLOYEES
WHERE COMMISSION PCT >= 0.25);

In the above example, the main query will return more than one record because the inner query
will return more than one value. Also, the subquery will return those employee numbers from the
EMPLOYEES table whose COMMISSION_PCT is greater than or equal to 0.25.



Retrieving Data in SQL 3-47

Multiple-Column Subqueries

A multiple-column subquery returns more than one column. In a multiple-column subquery,
the resulting rows of the subquery are evaluated pair-wise (that is column to column and row to
row comparisons) in the main query.

For example:

SELECT EMPLOYEE ID, FIRST NAME || ' ' || LAST NAME "“ENAME”,
DEPARTMENT ID FROM EMPLOYEES

WHERE (EMPLOYEE ID, DEPARTMENT ID) IN(SELECT E.EMPLOYEE ID,
D.DEPARTMENT ID FROM EMPLOYEES E, DEPARTMENTS D

WHERE E.DEPARTMENT ID = D.DEPARTMENT ID);

In the above query, the inner query returns two columns, EMPLOYEE_ID and DEPARTMENT_ID.
Here, the comparison is column to column that means the column values are compared as a
pair and not individually.

CORRELATED SUBQUERIES

A correlated subquery is the SELECT statement that is nested inside another query containing the
reference of one or more columns in the outer query.

For example:

SELECT EMPLOYEE ID, MANAGER ID, FIRST NAME || ‘' ' || LAST NAME
“ENAME”, SALARY FROM EMPLOYEES OuterE

WHERE SALARY > (SELECT AVG (SALARY) FROM EMPLOYEES InnerE

WHERE InnerE.EMPLOYEE ID = EMPLOYEE ID);

In the above correlated subquery, you can see that inner query contains a reference to InnerE.
EMPLOYEE_ID. This reference compares the outer query’s EMPLOYEE_ID with the inner
query’s EMPLOYEE_ID. When the above query is executed, the Oracle will execute the inner
query for each employee record. The inner query will calculate the average salary of the particular
employee for the row being processed in the outer query. This correlated subquery determines
whether the inner query returns a value that meets the condition of the WHERE clause. The
output of the above query is as follows:

JOIN

Sometimes you may need to retrieve records from more than one table. To do so, the Oracle
database provides a technique called Join. Joins are used to combine the result set of one or
more tables. A join operation can be performed whenever two or more tables are listed in the
FROM clause of an SQL statement. In order to query data from more than one table, you need
to identify common columns that relate the tables. If any two of these tables have a common
column name, then you must qualify all references to these columns throughout the query with
table names to avoid ambiguity.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-48 Learning Oracle 12c: A PL/SQL Approach

Join means accessing rows from one or more tables. A join operation is essential while retrieving
data from one or more tables. The general syntax of a SELECT query that joins two tables is
as follows:

SELECT Columnl, Column2, .. ...eeueeueeneennn
FROM Tablel, Table?2
WHERE Tablel.Join Column = TableZ.Join Column;

In the above syntax, the SELECT clause lists the columns that you want to retrieve and the
FROM clause lists all table names that are involved in the join operation. On the basis of the
join condition (Tablel.Join_Column = Table2.Join_Column), the rows from the tables Tablel
and Table2 will be retrieved. This means that only those rows will be retrieved from the tables
that meet the join condition. If you want to retrieve a column that exists in more than one
table, you need to qualify the column name in the SELECT clause, so that Oracle returns the
specific column. To qualify a column in the SELECT clause, you have to specify the table name
containing the column, followed by a period (.) and column name. Joins are of various types
and these are discussed next.

INNER JOIN

INNER JOIN joins two or more tables and returns only those rows from the tables that follow
the join condition. The syntax for using the INNER JOIN is as follows:

SELECT Columnl, Column2, ...
FROM Tablel, Table2, ...
WHERE Tablel.Columnl=Table2.Columnl...

In the above syntax, the join condition (Tablel.Columnl=Table2.Columnl) appears in the
WHERE clause.

For example:

SELECT EMPLOYEE ID, FIRST NAME |[|' ' || LAST NAME “ENAME”",
DEPARTMENT NAME FROM EMPLOYEES, DEPARTMENTS
WHERE EMPLOYEES.DEPARTMENT ID = DEPARTMENTS.DEPARTMENT ID;

The above SQL query will return the name of the employees with their employee id and
department name. It will return only those rows where the department number of the table
EMPLOYEES matches with department number of the table DEPARTMENTS.

Note
You can add more than one condition to the WHERE clause.

The syntax for using the ISO/ANSI INNER JOIN is as follows:
SELECT Columnl, Column2, ...

FROM Tablel [INNER JOIN] [JOIN] TableZ2
[ON] [USING] Tablel.Columnl=Table2.Columnl



Retrieving Data in SQL 3-49

In the above syntax, the SELECT clause lists columns and the FROM clause lists the tables
involved in the join operation.

JOIN and INNER JOIN
These keywords indicate that the join operation is being performed. This clause is used to replace
the comma-delimited used between tables in the FROM clause.

ON
The ON clause is used to specify a join condition. This clause is used to replace the join condition
in the WHERE clause.

For example:

SELECT EMPLOYEE ID, FIRST NAME || 'Y ' || LAST NAME "“ENAME”,
DEPARTMENT NAME FROM EMPLOYEES INNER JOIN DEPARTMENTS
ON EMPLOYEES.DEPARTMENT ID = DEPARTMENTS.DEPARTMENT ID;

The above SQL query will return only those rows, where the department number in the
EMPLOYEES table matches with the department number in the DEPARTMENTS table.

USING (column)

This clause is also used to replace the join condition in the WHERE clause. This clause is used
when several columns share the same name in tables that appear in the FROM clause. It is
recommended not to qualify the column name with a table name or table alias within this clause.

For example:

SELECT EMPLOYEE ID, SALARY, DEPARTMENT NAME
FROM EMPLOYEES INNER JOIN DEPARTMENTS
USING (DEPARTMENT ID);

The above SQL query will return only those rows from the tables EMPLOYEES and
DEPARTMENTS, where the department numbers match.

The following example will illustrate the use of INNER JOIN with the WHERE clause:

SELECT EMPLOYEE ID, FIRST NAME || 'Y ' || LAST NAME "“ENAME”,
DEPARTMENT NAME FROM EMPLOYEES INNER JOIN DEPARTMENTS

ON EMPLOYEES.DEPARTMENT ID = DEPARTMENTS.DEPARTMENT ID

WHERE EMPLOYEES.JOB ID IN(‘AC MGR’, ‘ST MAN’, ‘IT PROG');

The above SQL query will return only those rows where the department number of the
EMPLOYEES table matches with the department number of the DEPARTMENTS table provided
the employee’s job is AC_MGR, ST_MAN, or IT_PROG. You can also use the WHERE clause
in the ISO/ANSII INNER JOIN semantics for further filtering of records.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



t www.cadcim.com

on visi

Evaluation Copy. Do not reproduce. For informat

3-50 Learning Oracle 12c: A PL/SQL Approach

OUTER JOIN

The OUTER JOIN returns all rows of a table with only those rows from another table that follow
the join condition. It also returns a null value in place of the records which do not follow the
join condition from another table. There are three types of outer joins: LEFT OUTER JOIN,
RIGHT OUTER JOIN, and FULL OUTER JOIN. These types are discussed next.

LEFT OUTER JOIN

The LEFT OUTER JOIN returns all rows of the first table (the table that appears first in the table
list of the FROM clause) and only those rows from the second table that follow the join condition.
It also returns NULL values for the non-matching (that does not follow the join condition) rows
of the second table. The syntax for using the LEFT OUTER JOIN is as follows:

SELECT Columnl, Column2, ...
FROM Tablel LEFT OUTER JOIN Table2
ON Tablel.Join Column=Table2.Join Column

In the above syntax, the SELECT clause lists the columns to be displayed and the FROM clause
lists the tables involved in the join operation with the table aliases. The LEFT OUTER JOIN
is a keyword that indicates that the left outer join operation is being performed. This syntax is
used to replace the comma-delimiter used between tables in the FROM clause. The ON clause
in the syntax is used to specify a join condition. This syntax is used to replace the join condition
in the WHERE clause.

For example:

SELECT EMPLOYEES.FIRST NAME, DEPARTMENTS.DEPARTMENT NAME
FROM EMPLOYEES LEFT OUTER JOIN DEPARTMENTS
ON EMPLOYEES.DEPARTMENT ID=DEPARTMENTS.DEPARTMENT ID;

The above SQL query will return all rows from the DEPARTMENTS table and only those rows
from the EMPLOYEES table that meet the join condition. Also, it will return the NULL value
for those rows that do not follow the join condition.

RIGHT OUTER JOIN

The RIGHT OUTER JOIN returns all rows of the second table (that appears second in the
table list of the FROM clause) and only those rows from the first table that follow the join
condition. It also returns the replacement of the non-matching rows (rows that do not follow
the join condition) from the first table with a NULL value. The syntax for using the RIGHT
OUTER JOIN is as follows:

SELECT Columnl, Column2, ...
FROM Tablel RIGHT OUTER JOIN Table2
ON Tablel.Join Column=Table2.Join Column

In the above syntax, the SELECT clause lists the columns to be displayed and the FROM clause
lists the tables involved in the join operation.



Retrieving Data in SQL 3-51

The RIGHT OUTER JOIN is a keyword and indicates that the join operation is being performed.
This syntax is used to replace the comma-delimited table expressions used in the FROM and
WHERE clauses.

The ON clause specifies a join condition. This syntax is used to replace the join condition in
the WHERE clause.

For example:

SELECT FIRST NAME, DEPARTMENT NAME
FROM EMPLOYEES RIGHT OUTER JOIN DEPARTMENTS
ON EMPLOYEES.DEPARTMENT ID=DEPARTMENTS.DEPARTMENT ID;

The above SQL query will return all rows from the EMPLOYEES table and only those rows from
the DEPARTMENTS table that meet the join condition. Also, it will return the NULL value for
those rows that do not follow the join condition.

FULL OUTER JOIN

The FULL OUTER JOIN returns all those rows from both the tables, where the rows from one
table match with the rows from the other table. The syntax for using the FULL OUTER JOIN
is as follows:

SELECT Columnl, Column2, ...
FROM Tablel FULL OUTER JOIN Table2
ON Tablel.Join Column=Table2.Join Column

In the above syntax, the SELECT clause lists the columns to be displayed and the FROM clause
lists the tables involved in the join operation.

For example:

SELECT EMPLOYEES.FIRST NAME, EMPLOYEES.SALARY,
DEPARTMENTS . DEPARTMENT NAME FROM EMPLOYEES FULL OUTER JOIN
DEPARTMENTS ON EMPLOYEES.DEPARTMENT ID=DEPARTMENTS.DEPARTMENT ID;

The above query will display two columns FIRST_NAME and SALARY from the table
EMPLOYEES, and DEPARTMENT_NAME from the table DEPARTMENTS. It will return only
those rows in which the values of the column DEPARTMENT _ID of the EMPLOYEES table
matches with the values of the column DEPARTMENT _ID of the DEPARTMENTS table. It
will also return Null values from both the tables those do not match the join condition.

Self Join

The self join joins a table to itself. It means that a self join joins one row of a table with another
row in the same table. It compares one row of a table to itself or with the other rows in the same
table. This table appears twice or more times in the FROM clause and is followed by table aliases
that qualify column names in the join condition and the SELECT clause. The syntax for using
the self join is as follows:

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



t www.cadcim.com

on visi

Evaluation Copy. Do not reproduce. For informat

3-52 Learning Oracle 12c: A PL/SQL Approach

SELECT Columnl, Column2,...
FROM Tablel Table aliasl, Tablel Table aliasZ2,
WHERE Table aliasl.Columnl=Table alias2.Columnl...

In the above syntax, the join condition appears in the WHERE clause. The Table_alias1 and
Table_alias2 refer to the name of Tablel. Also, Table_alias1.Columnl and Table_alias2.Columnl
refer to Columnl from Tablel.

Note
For joining a table with itself, you must use an alias for each of the tables in the FROM clause as
well as in the SELECT list and the WHERE clause.

For example:

SELECT m.FIRST NAME || ‘' Is manager of ’ || e.FIRST NAME
FROM EMPLOYEES m, EMPLOYEES e
WHERE m.MANAGER ID = e.EMPLOYEE ID;

The above query will return both employee number and employee name from the EMPLOYEES
table, as here the selfjoin retrieves rows from the same table.

Equijoin
An equijoin contains equality operator (=) in the join condition which is used to match rows
trom different tables.

For example:

SELECT e.EMPLOYEE ID, e.FIRST NAME, e.SALARY, d.DEPARTMENT ID,
d.DEPARTMENT NAME FROM EMPLOYEES e, DEPARTMENTS d
WHERE e.DEPARTMENT ID = d.DEPARTMENT ID;

The above query will return only those rows in which the department number of the EMPLOYEES
table matches with the department number of the DEPARTMENTS table.

Cartesian Joins

The cartesian join occurs when you select data from two tables and there is no join condition.
It is a join of every row of a table with every row of another table. This only happens, when
no matching join columns are specified in the join condition for the table listed in the FROM
clause. For example, if you have two tables, namely XYZ with 100 rows, and ABC with 200 rows,
then the cartesian join will return 20,000 rows.

Consider the following query:
SELECT * FROM EMPLOYEES, DEPARTMENTS;

The above query will return each row of the EMPLOYEES table with each row of the
DEPARTMENTS table.



Retrieving Data in SQL 3-53

Now consider the following query with the WHERE clause:

SELECT * FROM EMPLOYEES, DEPARTMENTS
WHERE DEPARTMENTS.DEPARTMENT ID = 60
AND EMPLOYEES.SALARY > 5000;

The above query will return the details of employees of the department 60 having salary greater
than 5000 from the EMPLOYEES and DEPARTMENTS tables.

Antijoins

An antijoin between two tables returns those rows from the first table for which there are no
corresponding rows in the second table. It implies that antijoin returns the rows that fail to
match the rows returned by the subquery on the right side. Antijoins are written using the NOT
EXISTS or NOT IN operator.

For example:

SELECT * FROM EMPLOYEES

WHERE DEPARTMENT ID NOT IN

(SELECT DEPARTMENT ID FROM DEPARTMENTS
WHERE LOCATION ID = 2500);

Semijoins
A semijoin between two tables returns the rows from the first table having one or more matches
in the second table. Semijoins are written using the EXISTS or IN operator.

For example:

SELECT * FROM DEPARTMENTS

WHERE EXISTS (SELECT * FROM EMPLOYEES

WHERE EMPLOYEES.DEPARTMENT ID=DEPARTMENTS.DEPARTMENT ID)
ORDER BY DEPARTMENT NAME;

The above query will return the list of departments that have at least one employee. The
department name will appear only once in the query output, no matter how many employees
it has. The output of the above query is shown in Figure 3-42.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-54 Learning Oracle 12c: A PL/SQL Approach

Worksheet Query Builder

SELECT * FROM DEPARTMENTS WHERE EXISTS (SELECT * FROM EMPLOYEES
VHERE EMPLOYEES.DEPARTMENT ID=DEPARTMENTS.DEPARTHENT ID)

OEDER. BY DEPARTMENT HNAME:

F..
DQuery Result x
& B 9 B sou | Al Rows Fetched: 11in 0.003 seconds

DEPARTMENT_ID ||  DEPARTMENT NaME || MANAGER I |[§ LOCATION_ID

1 110 Accounting 205 1700
2 10 Administration 200 1700
3 90 Executive 100 1700
4 100 Finance 108 1700
3 40 Human Resources 203 2400
3 &0 IT 103 1400
7 20Marketing 201 1800
8 70 Fublic Relations 204 2700
9 30 Purchasing 114 1700
10 20 Sales 145 2500
11 50 Shipping 121 1500

Figure 3-42 Retrieving data using the Semijoins

ACCEPTING VALUES AT RUNTIME

To create an interactive SQL statement, you can define variables in the SQL statement. This
allows the users to supply values at runtime, thus enhancing the ability to reuse your scripts.
Oracle lets you define variables in your scripts. An ampersand (&), followed by a variable name,
prompts for and accepts values at runtime.

For example:

The following SELECT statement queries the EMPLOYEES table based on the department
number supplied at runtime.

SELECT EMPLOYEE ID, FIRST NAME, JOB ID, HIRE DATE, SALARY
FROM EMPLOYEES
WHERE DEPARTMENT ID = &DeptID;

After executing the above query, the Enter Substitution Value input box will be displayed, as
shown in Figure 3-43. Enter 30 as the value for the DeptID variable. Choose OK; the output
of the above query will be displayed, as shown in Figure 3-44.

Enter Substitution Variakle ﬂ

DEFTID:

[ Ok i [ Cancel ]

Figure 3-43 The Enter Substitution Variable input box



Retrieving Data in SQL 3-55

Worksheet Query Builder

SELECT EMPLOYEE_ID, FIRIT_NAME, JOE_ID, HIRE DATE, 3ALLRY
FROM EMPLOYEES

VHERE DEPARTMENT ID = sDeptID:

.
[Z] seript Output x| [ Query Result x
& B @9 Bk soL | allRows Fetched: 6 in 0.003 seconds
ewpLOvEE_ID [{| FRsT_Name [f| 10810 || HRE_DATE | sauary |

1 114 Den PU_MRN  07-12-02 11000
2 115 Alexander PU_CLERE 18-05-03 3100
3 116 Shelli PU_CLERE 24-12-05 2900
4 117 Sigal PU_CLERK 24-07-035 2800
3 118 Guy PU_CLERK 15-11-04 2600
& 1153 Karen PU_CLERK 10-08-07 2500

Figure 3-44 Retrieving data using Enter Substitution Variable input box

While using substitution variables for the character or date values, you need to enclose the
variables in single quotes. Otherwise, the user will have to enclose them in quotes at runtime.
If the variables are not enclosed in single quotes, Oracle considers any non-numeric value as a
column name.

Defining User Variables
You can define substitution variables using the DEFINE command to avoid the prompt for the
value at runtime.

For example:

To define a user variable named DeptID and give it a value 60, enter and execute the following
command:

DEFINE DeptID = 60;

To confirm the definition of the variable, enter DEFINE followed by the variable name:
DEFINE DeptID;

The following output will be displayed:
DEFINE DEPTID = 60 (NUMBER)

You can use the above defined variables in the query as input value.

SELECT EMPLOYEE ID, FIRST NAME, JOB ID, HIRE DATE, SALARY,
DEPARTMENT ID FROM EMPLOYEES WHERE DEPARTMENT ID = &DeptID;

The output of the query is shown in Figure 3-45.

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-56 Learning Oracle 12c: A PL/SQL Approach

Worksheet Query Builder

DEFIHE DeptID = 60;
DEFIHNE DeptID;

SELECT EMPLOYEE_ID, FIRIT _NAME, JOE_ID, HIFE DATE, JALARY,
DEPARTMENT_ID FROM EMPLOYEES
VHERE DEPARTHMENT ID = &DeptID:

.
[Elsoipt Output | [P Query Result x
I 3 E Elﬂ @ SQL | All Rows Fetched: 5in 0.026 seconds
empLOYEE_ID [ FirsT_name |[§ 108D | HReDATE | saLary [§ DEPARTMENT DD

1 103 Alexander IT_FROG 03-01-06 a0oo &0
2 104 Bruce IT_FROG 21-05-07 a0oo &0
3 105 Dawvid IT_FROG 25-06-03 4300 &0
4 106WValli IT_FROG 05-02-06 4800 a0
5 107 Diana IT_FROG 07-02-07 4200 a0

Figure 3-45 Retrieving data using the defined variables

To delete a user variable, you can use the UNDEFINE command followed by the variable name:

UNDEFINE DeptID;

Saving a Variable for a Session

Consider the following SQL query saved to a file named Demo_Ex.sql. When you execute this
script file, you will be prompted to enter a value for COL1, COL2, and COL3:

SELECT &COL1l, &COLZ2, &COL3 FROM &TABLE NAME
WHERE &COL4 = &VAL;

To save the above query, choose the Save option from the File Menu; the Save dialog box will
be displayed. In this dialog box, enter the Demo_Ex name in the File name edit box and choose
the Save button to save the file. The above query will be saved in the file named Demo_Ex.sql.
Now, you can execute this file by using the @ or the START command as shown below:

START Demo_ Ex;
After executing the above query, the Enter Substitution Value input box will be displayed and

you will be prompted to enter value for each variable. The output of the above command is
shown in Figure 3-46.



Retrieving Data in SQL 3-57

Worksheet Query Builder
START Demo_Ex:

F..

[El script output x

¢ HBE E| Task completed in 32.784 seconds

0ld: 5ELECT &COLl, &COLE, &COL3 FROM &<TAELE NAME
WHERE &COL4 = &WAL

new: JELECT EMPLOYEE_ID, FIRST NAME, 3JALARY FROM EMPLOYEES
WHERE DEPARTHMENT ID = &0

EMPLOYEE_ID FIRST NAME SALARY
103 Alexander 2000
104 Bruce &000
105 Dawid 4500
106 Valli 4500
107 Diaha 4200

Figure 3-46 Retrieving data using the substitution variables

Using Positional Notation for Variables

Instead of variable names, you can also use the positional notation. In this notation, the values
are assigned to variables on the basis of their positions and the variables are identified by &1,
&2, and so on. You can use this notation by using an ampersand (&), followed by a numeral in
the place of a variable name. Consider the following query:

SELECT EMPLOYEE ID, FIRST NAME, JOB ID, HIRE DATE, SALARY
FROM EMPLOYEES WHERE &1 = &2;

After executing the above query, the Enter Substitution Value input box will be displayed and
you will be prompted to enter values for &1 and &2. Enter DEPARTMENT_ID for &1 and
100 for &2. The output of the above command is shown in Figure 3-47.

Worksheet | Query Builder

SELECT EMPLOYEE ID, FIRST NAME, JOE_ID, HIRE DATE, SALARY
FROM EMPLOVEES WHERE &l = &2;

av

[P Query Result x

a E] E'ﬂ E SQL | AllRows Fetched: 6 in 0.006 seconds

EMPLOYEE_ID | FIRST_NAME ‘ JOB_ID ‘ HIRE_DATE ‘ SALARYl
108 Nancy FI_MGR 17-08-02 12008
109 Daniel FI_ACCOUNT 16-08-02 9000
110 John FI_ACCOUNT 28-09-05 2200

111 Ismael FI_ACCOUNT 30-09-05 7700
112 Jose Manuel FI_ACCOUNT 07-03-06 7800
113 Luis FI_ACCOUNT 07-12-07 €300

@ oo ow o e

Figure 3-47 Retrieving data using positional notation for variables

PIVOT AND UNPIVOT QUERIES

Piovting and unpivot are the processes of transposing rows into columns and columns into rows,
respectively. In SQL/PLSQL, pivoting and unpivoting can be achieved by using the PIVOT and
UNPIVOT clauses in the SELECT statement. These clauses are discussed next:

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-58 Learning Oracle 12c: A PL/SQL Approach

PIVOT

The PIVOT clause is used to transpose rows into columns. It accepts multiple rows, aggregates
them and transposes them into columns. The syntax for using the PIVOT clause is as follows:

SELECT * FROM
(
SELECT columnl, column2
FROM tables
WHERE conditions
)
PIVOT
(
aggregate function (column2)
FOR column?2
IN ( exprl, expr2, ... expr n) | subquery
)
ORDER BY expression [ ASC | DESC ];

The keywords and parameters used in the above syntax are explained next.

aggregate_function(column2)
It defines the aggregate function and column(s) to be aggregated.

FOR column2
It defines the columns to be grouped and pivoted.

IN(exprl, expr2, ... expr_n)
It defines the filter for the column2 to pivot into headings in the cross-tabulation query results.

subquery
It can be used instead of a list of values for column2.

For examples:

SELECT * FROM
(
SELECT DEPARTMENT ID, JOB ID, SALARY
FROM EMPLOYEES
)
PIVOT
(
SUM (SALARY)
FOR DEPARTMENT ID
IN (10, 20, 30, 40, 50, 60)
)
ORDER BY JOB_1ID;



Retrieving Data in SQL

3-59

The above query returns jobs with total salaries in separate columns for each department. The
output of the above query is shown in Figure 3-48.

Worksheet Query Builder

PIVOT | SUM{ZALARY)
ORDER BY JOE_ID:

FOR DEPARTHMENT_ ID

SELECT * FROM { SELECT DEPARTMENT ID, JOB_ID, SALARY FROM EMPLOVEES)
IN (10, 20, 30, 40, 50, &0))

.. 4

[ Query Result x

5 s

All Rows Fetched: 13 in 0.004 seconds

R ENEN ENENER

1 AC_ACCOUNT
2 AC_MER

3 AD 2SST

4 LD PRES

5 2D VP

& FI_ACCOUNT
7 FI_MGR

8 HR_REP

9 IT_PROG

10 ME_MEN
11 ME_REP
12 PR_REP
13 FU_CLERK
14 FU_MAN
15 53_MAN
16 54_REP
17 5H_CLERK
18 5T_CLERK
19 5T_MEN

Figure 3-48 Retrieving data using the PIVOT clause

{nuall)
{nuall)

4400
{nuall)
{nall)
{nall)
{nuall)
{nuall)
{nuall)
{nall)
{nall)
{nall)
{nall)
{nall)
{nall)
{nuall)
{nuall)
{nuall)
{nuall)

{null)
{null)
{null)
{null)
{null)
{null)
{null)
{null)
{null)
13000
&000
{null)
{null)
{null)
{null)
{null)
{null)
{null)
{null)

{null)
{null)
{null)
{null)
{null)
{null)
{null)
{null)
{null)
{null)
{null)
{null)

13800

11000
{null)
{null)
{null)
{null)
{null)

{null) (null)
{null) (null)
{null) (null)
{null) (null)
{null) (null)
{null) (null)
{null) (null)

6500 (null)
{null) (null)
{null) (null)
{null) (null)
{null) (null)
{null) (null)
{null) (null)
{null) (null)
{null) (null)
{null) &4300
{null) 55700
{null) 36400

You can also alias columns returned by the pivot query:

SELECT * FROM
(

SELECT DEPARTMENT ID,

FROM EMPLOYEES

)
PIVOT

(

JOB_1ID,

SUM (SALARY) As Total Salary
FOR DEPARTMENT ID
IN (10 AS Department 10, 20 AS Department 20, 30 AS Department 30,
40 AS Department 40, 50 AS Department 50, 60 AS Department 60)

)
ORDER BY JOB ID;

SALARY

The output of the above query is shown in Figure 3-49.

{null)
{null)
{null)
{null)
{null)
{null)
{null)
{null)

2BE00
{null)
{null)
{null)
{null)
{null)
{null)
{null)
{null)
{null)
{null)

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-60 Learning Oracle 12c: A PL/SQL Approach

Worksheet Query Builder
EISELECT * FROM | SELECT DEPARTMENT IL, J0B_ID, SALARY FROM EMPLOYEES)
FIVOT { SUM({SALARY) FOR DEPARTMENT ID IH (10 AS Departuwent 10, 20 A5 Department 20,
30 RS Department 30, 40 @S Department 40, 50 A% Department 50, S0 #AS Department 60))
ORDER BY JOB ID;:
r. 2
P> Query... x
& 5 ) B 5oL | Al Rows Fetched: 19 in 0.007 seconds
@ 08D |E| DEPARTMENT_10 |E| DEPARTMENT_20 |@ DEPARTMENT_30 |E| DEPARTMENT_40 |E| DEPARTMENT_50 |@ DEPARTMENT 60
1 AC_RCCOUNT {null) {null) {null) {null) [null) {null)
2 AC_MER {null) (null) {null) (null) (null) {null)
3 AD_ASST 4400 {null) {null) {null) [null) {null)
4 RD PRES {null) {null) {null) {null) (null) {null)
5D VP {null} {null) {null} {null} (null) {null)
& FI_ACCOUNT {null) {null) (null) {null) [null) {null)
7 FI_MGR {null) (null) {null) {null) (null) {null)
8 HR_REP {null) {null) {null) 6500 [null) {null)
9 IT PROG {null) (null) {null) {null) [null) 28800
10 ME_MAN {null) 13000 {null) {null) [null) {null)
11 ME_REF {null) 6000 (null) {null) [null) {null)
12 FR_REF {null) (null) {null) {null) (null) {null)
13 OU_CLERK {null) {null) 13900 {null) [null) {null)
14 PU_MAN {null) (null) 11000 {null) [null) {null)
15 5n MAN {null) {null) {null} {null) {null) {null)
16 52 REP {null) {null) {null) {null) {null) {null)
17 SH_CLERK {null) (null) {null) {null) 64300 {null)
18 ST_CLERK {null) {null) {null) {null) 55700 {null)
19 5T MAN {null) (null) (null) {null) 36400 {null)

Figure 3-49 Retrieving data using the PIVOT clause with column alias

UNPIVOT

The UNPIVOT clause is the opposite of the PIVOT clause. It is used to transpose columns into
rows. The syntax for using the PIVOT clause is as follows:

SELECT ...
FROM e
UNPIVOT [INCLUDE |EXCLUDE NULLS]
( unpivot clause
unpivot for clause
unpivot in clause )
WHERE e

The keywords and parameters used in the above syntax are explained next.

The INCLUDE | EXCLUDE NULLS clause gives you the option of including or excluding
null-valued rows. If you omit this clause, then the unpivot operation excludes nulls.

unpivot_clause
It specifies a name for each output column that will hold measure values.

unpivot_for_clause
It specifies name for the output column resulting from an unpivot query. The data in this column
describes the measure values in the unpivot_for_clause column.



Retrieving Data in SQL 3-61

unpivot_in_clause
It specifies the input data columns whose names will become values in the output columns of
the unpivot_for_clause.

For example:

WITH emp data AS (
SELECT EMPLOYEE ID, JOB ID,
FIRST NAME| |’ ‘||LAST NAME “ENAME”,
TO CHAR (DEPARTMENT ID) AS DEPARTMENT ID,
TO CHAR (HIRE DATE) AS HIREDATE
FROM EMPLOYEES
)
SELECT EMPLOYEE ID, JOB ID, unpivot col name, unpivot col value
FROM emp data
UNPIVOT (unpivot col value
FOR unpivot col name
IN (ENAME, DEPARTMENT ID, HIREDATE))
WHERE JOB ID IN (‘AD PRES’,’AD VP’ ,’FI MGR');

The output of the above query is shown in Figure 3-50.

Worksheet Query Builder

EWITH emp_data AS | SELECT EMPLOYEE_ID, JOB_ID, FIRST NAME||' '[||LAST NAME "ENAME™,
TO_CHAR (DEPARTHMENT_ID) #S DEPARTMENT_ID, TO_CHAR(HIRE DATE) A5 HIREDATE FROM EMPLOYEES)
SELECT EMPLOYEE ID,JO0E_ID,unpivot_col_name, unpiwot _col_walue FROM emp data
TNPIVOT {unpivot_col_value FOR unpiwvot_col_name TH (ENAME, DEPARTMENT ID, HIREDATE))
YHERE JOE_ID IW('AD_FRES','AD WP','FI_MGR'):

%
DQuery Result *
& 5 @) Bk soL | Al Rows Fetched: 12in 0,007 seconds
empLovEE_ID |§ J0B_ID |[§ unPvOT_coL_NAME |[§ UNPIVOT_COL_VALUE

1 100AD FEES ENRME Steven King
2 100 AD PRES DEFARTMENT ID a0
3 100 AD FRES HIREDATE 17-06-03
4 101 AD VP ENZME Neena Kochhar
5 101 AD VP DEPARTMENT ID a0
6 101AD VP HIRELATE 21-09-05
7 102 AD VP ENZME Lex De Haan
8 102 A0 WP DEPARTMENT_ID a0
9 102 AD VP HIRELDATE 13-01-01
10 108 FI_MGR ENRAME Hancy Greenberg
n 108 FI_MGR  DEFARTMENT_ID 100
12 108 FI_MGR  HIREDATE 17-08-02

Figure 3-50 Retrieving data using the UNPIVOT clause

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-62 Learning Oracle 12c: A PL/SQL Approach

Self-Evaluation Test

Answer the following questions and then compare them to those given at the end of this
chapter:

1. Which of the following is not a logical operator?

(a) AND (b) OR
(c) NOT (d) IN

2. Which of the following clause is used to filter the data from the database?

(a) WHERE (b) DESC
(c) GROUP BY (d) ORDER BY

3. Which of the following operators is used to combine the results from two or more queries
into a single result?

(a) IN (b) SET
(c) LIKE (d) All of these
4. Which of the following clauses is used to arrange the data retrieved from a table into sorted
order?
(a) HAVING (b) GROUP BY
(c) ORDER BY (d) WHERE

5. Which of the following is the aggregate function?

(a) SUM (b) COUNT
(c) Both (a) and (b) (d) None of these
6. The statement is the most popular SQL statement to query a table.
7. 1InOracle, the clause is used to prevent the selection of duplicate rows in a table.
8. The operators are used to compare one expression with another.
9. The clause is used to select, delete, or update only those rows in which the

expression evaluates to true.
10. The operator is used to compare the character string with the matching pattern.
11. The SELECT statement is used to retrieve or view data from one or more tables. (T/F)
12. You can define the WHERE clause with only one condition. (1/F)

13. The BETWEEN operator is used to retrieve rows that fall within a specified range. (T/F)



Retrieving Data in SQL 3-63

14. The IN operator is used to retrieve rows based on the multiple value conditions. (1/F)

15. The DEFINE command is used to define a substitution variable in SQL *Plus. (1/F)

Review Questions

Answer the following questions:

1. Which of the following operators are used to compare one expression with another

expression?
(a) Arithmetic (b) Logical
g
(c) Comparison (d) None of these

2. Which of the following is the correct syntax for using the AND operator?

(a) SELECT Columnl1, Column?2..........
From Table
WHERE Conditionl AND Condition2;

(b) SELECT Columnl, Column2..........
FROM Table
WHERE Conditionl & Condition2:

(c) SELECT Columnl, Column2..........
FROM Table
WHERE Conditionl && Condition2.
(d) None of these
3. Which of the following keywords belongs to the SET operators?

(a) UNION (b) MINUS
(c) Both (a) and (b) (d) None of these

4. Which of the following operators cannot be applied on the columns of a data type?

(a) BLOB (b) BFILE
(c) Both (a) and (b) (d) None of these

5. Which of the following joins returns a null value in place of the rows which do not match
the join condition from the other table?

(a) INNER JOIN (b) OUTER JOIN
(c) LEFT OUTER JOIN (d) RIGHT OUTER JOIN

Evaluation Copy. Do not reproduce. For information visit www.cadcim.com



Evaluation Copy. Do not reproduce. For information visit www.cadcim.com

3-64 Learning Oracle 12c: A PL/SQL Approach

6. You can define the clause with multiple conditions.

7. The operator joins two or more than two conditions and ensures that the rows
satisfying the conditions are selected.

8. The operator joins two or more than two conditions and ensures that the rows
satisfying any one of the conditions are selected.

9. The operator joins the result set of two SELECT statements.
10. The operator returns distinct rows retrieved by either of the queries.

11. Set operators are used to combine the results from two or more queries into a single result.
(T/F)

12. The UNION operator returns the difference between two sets. (1/F)

13. Set operators are not used with the SELECT statements containing the TABLE collection
expressions. (T/F)

14. The GROUP BY clause is used in the SELECT statement to collect data across multiple
records and group the results by one or more columns. (1/F)

15. The LEFT OUTER JOIN returns all rows of the first table and only those rows from the
second table that follow the join condition. (1/F)

EXERCISES
Exercise 1
Write a query using the INTERSECT command.

Exercise 2

Write a query to return all distinct rows retrieved by either of the queries using the UNION
operator.

Exercise 3

Write a query to display the names of those employees who earn the lowest salary in a department.

Answers to Self-Evaluation Test
1.d, 2. a, 3. b, 4. ¢, 5. ¢, 6. SELECT, 7. DISTINCT, 8. comparison, 9. WHERE, 10. LIKE,
11. T 12.F 13. T, 14. 1, 15. T



