
Chapter 3

Retrieving Data in SQL
 Learning Objectives
After completing this chapter, you will be able to:
• Use the SELECT statement
• Work with SQL operators
• Work with Hierarchical Query Operators (PRIOR and CONNECT_BY_ROOT)
• Understand the Set operators (UNION, UNION ALL, INTERSECT, and MINUS)
• Understand the operator precedence
• Understand the CASE expression
• Understand Subqueries
• Apply Joins
• Work with the table and column aliases
• Understand pivot and unpivot queries

3-2					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

INTRODUCTION
Data retrieval is the process of fetching data from database. You can retrieve data from database
using the SELECT statement. To retrieve desired data from the database, you need a set of
criteria and need to perform some operations on data through queries.

In this chapter, you will learn how to retrieve the desired data from database. You will also learn
about SQL Operators, Operator precedence, Subqueries, pivot and unpivot queries, and JOINs.
Additionally, you will learn about working with table and column aliases.

THE SELECT STATEMENT
The SELECT statement is the most popular SQL statement used for querying a table. This
statement is used to retrieve or view the data of one or more tables. The syntax for using the
SELECT statement is as follows:

SELECT *
FROM Table_Name;

In the above syntax, SELECT and FROM are keywords and Table_Name is the name of the
table from which you want to view data rows. * (asterisk) is also a keyword and is used to retrieve
data from all columns or fields of a table.

For example:

Execute the following query in SQL Worksheet to get the record of all employees, as shown in
Figure 3-1.

SELECT * FROM EMPLOYEES;

Figure 3-1 shows the output of the above query when you execute it.

The above SQL query retrieves all information contained within the EMPLOYEES table. Note
that the asterisk is used as a wildcard in SQL. Literally, it means “Select all records from a table.”

You can use the following syntax to limit the attributes retrieved from a table:

SELECT Column1, Column2, ...
FROM Table_Name;

 			
In the above syntax, SELECT and FROM are keywords and Column1, Column2, ... are the
names of the columns for which you want to retrieve data. Table_Name is name of the table
from which you want to retrieve data.

Retrieving Data in SQL 3-3

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-1 The rows retrieved from the EMPLOYEES table

For example:

The Human Resources department may require a list of ids and names of all employees of a
company. You can retrieve the required information using the following SQL statement:

SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME FROM EMPLOYEES;

Selecting Distinct Rows	
You can retrieve distinct rows from a table by using the DISTINCT clause with the SELECT
statement. Retrieving distinct rows from the table prevents the selection of duplicate rows.
Following is the syntax for using the DISTINCT clause with the SELECT statement:

SELECT DISTINCT Column_Name
FROM Table_Name;

In the above syntax, Column_Name is the name of the column for which you want to
retrieve distinct values and Table_Name is the name of the table which contains the column
Column_Name.

Note
You can also use the UNIQUE keyword instead of the DISTINCT keyword to prevent the selection
of duplicate rows.

For example:

Enter the following query in SQL Worksheet and then execute it. The output of the query will
be displayed, as shown in Figure 3-2.

SELECT JOB_ID FROM EMPLOYEES;

3-4					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-2 Output with duplicate rows

This query will retrieve a list of job ids. Notice that the job ids FI_ACCOUNT, IT_PROG, and
PU_CLERK appear more than once. Now, if you want to retrieve the list of different job ids with
no job ids being repeated in the list, use the DISTINCT clause with the SELECT statement, as
shown below. Figure 3-3 shows the output of the following query:

SELECT DISTINCT JOB_ID FROM EMPLOYEES;

The above query will retrieve all distinct job ids from the EMPLOYEES table.

Selecting Rows with the WHERE Clause
The WHERE clause is used with the SELECT, DELETE, or UPDATE statement to select,
delete, or update the data from a table on the basis of a condition. Also, this clause is used to
filter the data from the database. The WHERE clause selects, deletes, or updates only those
rows in which expressions evaluate to true.

Retrieving Data in SQL 3-5

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-3 Output with distinct rows

The syntax for using the WHERE clause is as follows:
	

SELECT Column_Name
FROM Table_Name
WHERE Column_Name/Expression Operator Value/Expression;

In the above syntax, SELECT, FROM, and WHERE are the keywords; Column_Name is the
name of the column that you want to select from the table; and Table_Name is the name of
the table. The WHERE clause used with both the DELETE and UPDATE statements will be
discussed later in this chapter.

For example:

Enter the following command lines in SQL Worksheet and then execute them. The output of
the query will be displayed, as shown in Figure 3-4.

SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, HIRE_DATE, SALARY,
JOB_ID FROM EMPLOYEES WHERE JOB_ID= ‘IT_PROG’;

In the above SQL statement, the WHERE clause will filter the data from the EMPLOYEES
table. The above SQL statement will return all rows having the job id IT_PROG.

3-6					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-4 The SELECT statement with the WHERE clause

Table Alias Names
Table alias refers to a different name for a table for the purpose of evaluating the query and is
most often used in a correlated query. You can code the query with an alias for the table name
to make the query easier to code.

For example:

Consider the query given below to retrieve data from two tables:

SELECT EMPLOYEES.FIRST_NAME, DEPARTMENTS.DEPARTMENT_NAME
FROM EMPLOYEES RIGHT OUTER JOIN DEPARTMENTS
ON EMPLOYEES.DEPARTMENT_ID=DEPARTMENTS.DEPARTMENT_ID ;

This query can be coded with the alias for the table name as follows:

SELECT E.FIRST_NAME, D.DEPARTMENT_NAME
FROM EMPLOYEES E RIGHT OUTER JOIN DEPARTMENTS D
ON E.DEPARTMENT_ID=D.DEPARTMENT_ID ;

In the above example, the table EMPLOYEES is referred by the alias E and the table
DEPARTMENTS is referred by the alias D. The above query will return only those rows in which
the values of the column DEPARTMENT_ID of the table EMPLOYEES match with values of
the column DEPARTMENT_ID of the table DEPARTMENT.

Column Alias Names
Column alias refers to the different name for a database column expression and this alias is
used for column headings. It does not affect the actual column name. It can be used to show
the name of the column according to the user requirement.

For example:

Consider the query given below:

Retrieving Data in SQL 3-7

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

SELECT EMPLOYEE_ID, FIRST_NAME
FROM EMPLOYEES;

This query can be coded with the alias for the table name in the following way:

SELECT EMPLOYEE_ID “ID”, FIRST_NAME “NAME”
FROM EMPLOYEES;

The above query will display two columns from the table EMPLOYEES. The first column will
have the heading ID and the other column will have the heading Name.

SELECT EMPLOYEE_ID “ID”, FIRST_NAME || ‘ ’ ||LAST_NAME “Name”,
SALARY “Basic Salary”, SALARY + NVL(COMMISSION_PCT, 0) “Net Salary”
FROM EMPLOYEES WHERE SALARY >= 12000;

The above query will display four columns from the table EMPLOYEES. The first column will
have the heading ID, the second column will have the heading Name, third and fourth columns
will have headings Basic Salary and Net Salary. The output of the above query is shown in
Figure 3-5.

Figure 3-5 Retrieving data with column alias names

Note
The NVL function will be discussed in later chapters.

SELECTING DATA FROM THE DUAL TABLE
The Dual table is the default table in the Oracle database. It is created by Oracle along with the
data dictionary. It is a special one-row and one-column table. The Dual table has exactly one
column called DUMMY of VARCHAR2(1) data type, as shown in Figure 3-6. The table has a
single row with a value of X (here X can be any value), as shown in Figure 3-7. The owner of the
dual table is SYS but it can be accessed by every user in the Oracle database.

3-8					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-6 Structure of DUAL table

Figure 3-7 Row of DUAL table

The following example will illustrate the use of the DUAL table to find the system date and the
current user:

SELECT SYSDATE,USER
FROM DUAL;

In the above example, the SELECT statement query will return the system date and
the name of current user, as shown in Figure 3-8. The SYSDATE function is used to return the
system date and is discussed in the later chapters.

Figure 3-8 Selecting SYSDATE and USER from
the DUAL table

Retrieving Data in SQL 3-9

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

SQL OPERATORS
An operator is a symbol or character that is capable of manipulating individual data items and
then returning a result. The data item on which an operator operates is called an operand. An
operator can operate on a single operand or two operands. Operators that operate on single
operand are called Unary operators and the operators that operate on two operators are called
Binary operators. The following operators are supported by Oracle:

1.	 Arithmetic Operators
2.	 Concatenation Operators
3.	 Hierarchical Query Operators
4.	 Comparison Operators
5.	 Logical Operators
6.	 Other Operators
7.	 Set Operators

These operators are discussed next.

Arithmetic Operators
Oracle database uses arithmetic operator to perform arithmetic operations on one or more
numeric values. Some of the arithmetic operators are also used with datetime and interval
operations. The arithmetic operators and their usage are discussed in Table 3-1.

Table 3-1 The Arithmetic operators and their description

Operator Description

+, - These are unary operators that represent the positive and
negative expressions.

+ This is the addition operator. It is used to add two data
items or expressions. It is a binary operator.

- This is the subtraction operator. It is used to subtract two
data items or expressions. It is also a binary operator.

* This is the multiplication operator. It is used to multiply
two data items or expressions. It is also a binary operator.

/ This is the division operator. It is used to divide two
data items or expressions. It is also a binary operator.

Following are the examples of arithmetic operators.

The following query is used to add two values in Oracle:

SELECT 5 + 5 Total_Value
FROM DUAL;

3-10					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
Output:

TOTAL_VALUE

10

The result of the above query will be stored in the TOTAL_VALUE column of the numeric
data type.

The following query is used to divide a value with other value:

SELECT 8 / 2 Total_Value
FROM DUAL;

Output:

TOTAL_VALUE

4

The following query adds specified number of days to SYSDATE:

SELECT SYSDATE, (SYSDATE) + 10
result_date FROM dual;

Output

SYSDATE 		 RESULT_DATE
--------------		 ----------------------
22-04-16 		 02-05-16

Note
The output of above query will depend on the current system date.

Concatenation Operators
The concatenation operators allow you to combine two or more characters or strings, columns
together into one expression. If any of the concatenation values is NULL, Oracle treats it as
zero length character string and returns the string having a value. In Oracle, two solid vertical
bars || are used as concatenation operator.

For example:

SELECT ‘CADCIM’ || ‘ ’ || ‘TECHNOLOGIES’ “COMPANY”
FROM DUAL;

Retrieving Data in SQL 3-11

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Output:

COMPANY

CADCIM TECHNOLOGIES

Hierarchical Query Operators
Hierarchical query operators are used on the tables which contain hierarchical data. Hierarchical
data is a parent-child relationship of data within the same table or view. There are two hierarchical
query operators PRIOR and CONNECT_BY_ROOT.

PRIOR
PRIOR is a unary operator which is used with CONNECT BY clause in hierarchical queries. It
can exist on either side of equality condition of the clause. It is mostly used to compare column
values with the equality operator. Due to PRIOR operator, the direction of hierarchy flow is
decided on the basis of the CONNECT BY clause condition.

The syntax for using PRIOR operator is as follows:

SELECT
FROM
START WITH
CONNECT BY [PRIOR] condition

In the above syntax, the START WITH clause specifies a condition that identifies the rows to
be used as the root of a hierarchical query.

For example:

SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, MANAGER_ID,
	 LPAD(LEVEL, 5*(LEVEL)) “LEVEL”
	 FROM EMPLOYEES WHERE EMPLOYEE_ID<115
 START WITH EMPLOYEE_ID = 100
 CONNECT BY PRIOR EMPLOYEE_ID = MANAGER_ID
 ORDER SIBLINGS BY FIRST_NAME;

The above SQL query will show the hierarchical relationship of employees and managers in
an organization. The SIBLINGS keyword used in ORDER BY clause preserves any ordering
within the hierarchy. The LEVEL is the pseudocolumn which returns 1 for a root row and 2 for
a child row, and so on. The output of above query is shown in Figure 3-9.

3-12					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-9 Using the PRIOR operator with the SELECT statement

CONNECT_BY_ROOT
CONNECT_BY_ROOT is a unary operator which is used in hierarchical queries. It enhances the
functionality of CONNECT BY [PRIOR] condition. Oracle returns the column values from the
root node associated with row of the column specified with the CONNECT_BY_ROOT operator.

For example:

SELECT EMPLOYEE_ID, FIRST_NAME|| ‘ ’ ||LAST_NAME “EMPLOYEE”,
MANAGER_ID, CONNECT_BY_ROOT FIRST_NAME “MANAGER”,
LEVEL-1 “LEVEL”, SYS_CONNECT_BY_PATH(FIRST_NAME, ‘/’) “HIERARCHY”
FROM EMPLOYEES WHERE LEVEL > 1 and DEPARTMENT_ID = 60
CONNECT BY PRIOR EMPLOYEE_ID = MANAGER_ID
ORDER BY “EMPLOYEE”, “MANAGER”, “LEVEL”, “HIERARCHY”;

The above example returns the first name of each employee in department 60, each manager at
the level upper than the employee in the hierarchy, the number of levels between manager and
employee, and the path between the two. The output of the above query is shown in Figure 3-10.

Retrieving Data in SQL 3-13

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-10 Using the CONNECT_BY_ROOT operator with the SELECT statement

Comparison Operators
The Comparison operators are used to compare one expression with another expression. These
operators compare two values or expressions and return a boolean result TRUE, FALSE, or NULL.
The Comparison operators are = (Equal), < (Less than), > (Greater than), <= (Less than or
equal to), >= (Greater than or equal to), <> and != (Not equal to), and value comparisons.
These operators are discussed next.

= (Equal)
This operator is used in a conditional statement. If the value or the result of expression on both
sides of the operator is equal, the condition will be TRUE.

For example:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”, SALARY,
DEPARTMENT_ID FROM EMPLOYEES WHERE DEPARTMENT_ID=30;

In the above example, the SQL query will return all those records of the EMPLOYEES table in
which the department number is 30. The output of above query is shown in Figure 3-11.

3-14					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-11 Using the Equal operator with the SELECT statement

!=, <>, or ^= (Not Equal to)
These operators are used to check inequality. If the value or result of expression on both sides
of the operator is not equal, the condition will evaluate to TRUE.

For example:
	

SELECT * FROM DEPARTMENTS WHERE LOCATION_ID <> 1700;

In the above example, the SQL query will return all those records of the DEPARTMENTS table,
in which the location id is not 1700. The output of the above query is shown in Figure 3-12.

Figure 3-12 Using the Not Equal to operator with the SELECT statement

< (Less Than)
If the value or result of an expression on the left of the operator is less than the value or result of
an expression on the right side of the operator, the < (Less than) operator will evaluate to TRUE.

Retrieving Data in SQL 3-15

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

For example:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”, SALARY
FROM EMPLOYEES WHERE SALARY<2500;

In the above example, the SQL query will return all those records from the EMPLOYEES table
in which the salary is less than 2500. The output of the above query is shown in Figure 3-13.

Figure 3-13 Using the Less Than operator with the SELECT statement

> (Greater Than)
If the value or the result of an expression on the left of the operator is more than the value or
result of an expression on the right, the > (Greater than) operator will evaluate to TRUE.

For example:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”, SALARY
FROM EMPLOYEES WHERE SALARY>15000;

In the above example, the SQL query will return all those records from the EMPLOYEES table
in which the salary is greater than 15000. The output of the above query is shown in Figure 3-14.

Figure 3-14 Using the Greater Than operator with the SELECT statement

3-16					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
<= (Less Than or Equal to)
If the value or result of an expression on the left of this operator is either less than or equal to
the value or result of an expression on the right of the operator, the <= (Less than or Equal to)
operator will evaluate to TRUE.

For example:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”, SALARY
FROM EMPLOYEES WHERE SALARY<=2200;

In the above example, the SQL query returns all those records of the EMPLOYEES table in which
the salary is less than or equal to 2200. The output of the above query is shown in Figure 3-15.

Figure 3-15 Using the Less Than or Equal to operator with the SELECT statement

>= (Greater Than or Equal To)
If the value or result of an expression on the left of this operator is either greater than or equal
to the value or expression on the right of this operator, the >= (Greater than or Equal to)
operator will evaluate to TRUE.

For example:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”, SALARY
FROM EMPLOYEES WHERE SALARY>=14000;

In the above example, the SQL query will return all those records of the EMPLOYEES table in
which the salary is either equal to or more than 14000. The output of the above query is shown
in Figure 3-16.

Retrieving Data in SQL 3-17

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-16 Using the Greater Than or Equal to operator with SELECT statement

ANY or SOME
The ANY or SOME operator is used to compare a value with each value in a list or the values
returned by a query. These operators must be preceded by a Comparison operator =, !=, >,
<, <=, or >=.

If ANY or SOME comparison operator is followed by a list of values, Oracle optimizer expands
the condition to all the values of the list together with the OR operator.

For example:

SALARY > ANY(2000, 3000)

transformed to

SALARY > 2000 OR SALARY > 3000

Also, if ANY or SOME operator is followed by the subquery, Oracle optimizer transforms it into
a condition containing the EXISTS operator and a subquery.

For example:

SALARY1 > ANY(SELECT SALARY FROM EMPLOYEES
WHERE DEPARTMENT_ID=60)

transformed to

EXISTS(SELECT SALARY FROM EMPLOYEES
WHERE DEPARTMENT_ID=60 AND SALARY1>SALARY)

The following example will illustrate the use of ANY and SOME operators with the comparison
operator >(greater than):

3-18					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY,HIRE_DATE FROM EMPLOYEES WHERE SALARY>SOME(13000,15000,20000);

	
	 Or

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY,HIRE_DATE FROM EMPLOYEES WHERE SALARY>ANY(13000,15000,20000);

In this example, the SQL query will return all those records of the EMPLOYEES table in which
the salary of employee is greater than any of values in the list (13000, 15000, 20000). The output
of the above query is shown in Figure 3-17.

Figure 3-17 Using the SOME operator with the SELECT statement

The following example will illustrate the use of the ANY and SOME operators with the
comparison operator =(Equal):

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY,HIRE_DATE FROM EMPLOYEES WHERE SALARY=ANY(13000,15000,20000);

	 Or

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY,HIRE_DATE FROM EMPLOYEES WHERE SALARY=SOME(13000,15000,20000);

In the above example, the SQL query will return all those records of the EMPLOYEES table in
which the salary is equal to the values in the list (13000, 15000, 20000).

Note
When the ANY operator is used with the comparison operator =(Equal), it works the same way
as the IN operator. The IN operator will be discussed later in this chapter.

ALL
The ALL operator is used to compare a value with every value in a list or the value returned by
a query. This operator must be preceded by the comparison operator =, !=, >, <, <=, or >=.

Retrieving Data in SQL 3-19

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

If the ALL comparison operator is followed by a list of values, Oracle optimizer expands the
condition to all the values of the list together with the AND operator.

For example:

SALARY > ALL(2000, 3000)

transformed to

SALARY > 2000 AND SALARY > 3000

Also, if the ALL operator is followed by a subquery, Oracle optimizer transforms it into a
condition that uses ANY comparison operator and a complementary comparison operator
including subquery.

For example:

SALARY1 > ALL(SELECT SALARY FROM EMPLOYEES
WHERE DEPARTMENT_ID=60)

transformed to

NOT(SALARY1 <= ANY(SELECT SALARY FROM EMPLOYEES
WHERE DEPARTMENT_ID = 60))

After further transforming the ANY operator above condition will look like:

NOT EXISTS (SELECT SALARY FROM EMPLOYEES
WHERE DEPARTMENT_ID=60 AND SALARY1 <= SALARY)

The following example will illustrate the use of the ALL operator with the comparison operator >
(greater than):

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY,HIRE_DATE FROM EMPLOYEES WHERE SALARY>ALL(8000,10000,13000);

In this example, the SQL query will return all those records of the EMPLOYEES table in which
the salary of employee is greater than each of the values in the list (8000, 10000, 13000). The
output of the above query is shown in Figure 3-18.

The following example will illustrate the use of the ALL operator with the comparison
operator >= (greater than or equal to):

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY,HIRE_DATE FROM EMPLOYEES WHERE SALARY>=ALL(8000,10000,13000);

	
In the above example, the SQL query will return all those records of the EMPLOYEES table in
which the salary of employee is greater than or equal to the values in the list (8000, 1000, 13000).

3-20					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-18 Using the ALL operator with the SELECT statement

Logical Operators
The logical operators are used to compare two or more conditions to produce result. The logical
operators are discussed next.

NOT
The NOT operator is used to reverse the output of any other logical operator. This
operator will return TRUE, if the given condition is FALSE, and will return FALSE, if the given
condition is TRUE.

For example:

SELECT * FROM EMPLOYEES
WHERE NOT (JOB_ID IS NULL);

The above query will return all those records of the EMPLOYEES table in which the column
JOB_ID is not Null.

The following example will illustrate the use of the BETWEEN operator with the NOT operator.

SELECT * FROM EMPLOYEES
WHERE NOT (SALARY BETWEEN 1000 AND 2000);

The above query will return all those records of the EMPLOYEES table in which the salary is
not between 1000 and 2000.

AND
The AND operator joins two or more than two conditions. This operator will return TRUE,
if both conditions are TRUE, and will return FALSE, if one of the conditions is FALSE.
Otherwise, it will return an unknown value.
	

Retrieving Data in SQL 3-21

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

For example:

SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, JOB_ID, SALARY
FROM EMPLOYEES WHERE JOB_ID = ‘ST_CLERK’ AND SALARY > 2500;

The above query will return all those records of the EMPLOYEES table in which both the
conditions, JOB_ID = ‘ST_CLERK’ and SALARY > 2500, return TRUE, as shown in Figure 3-19.

Figure 3-19 Query showing the use of the AND operator

OR
The OR operator joins two or more than two conditions. This operator will return TRUE, if one
of the conditions evaluates to TRUE and will return FALSE, if both the conditions evaluate to
FALSE. Otherwise, it will return an unknown value. The OR operator is evaluated after the AND
operator.	

SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, JOB_ID, SALARY
FROM EMPLOYEES WHERE JOB_ID = ‘ST_CLERK’ OR SALARY > 15000;

This above query will return all those records from the EMPLOYEES table in which one of the
conditions, JOB_ID = ‘IT_PROG’ or SALARY > 15000 is TRUE, as shown in Figure 3-20.

3-22					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-20 Query showing the use of the OR operator

Other Operators
Oracle provides some other operators as well. These are discussed next.

LIKE Operator
You can use the LIKE operator in a character string. This operator compares the string with
the matching pattern. Sometimes, you may need to perform searches by matching part of a
character string. In such cases, you can use the LIKE operator. For example, you may need to
retrieve the name of the students, whose last name begins with the letter M, or find all courses
with the initial letters MIS. To do so, you can use the LIKE operator. The general syntax for
using the LIKE operator in the search condition is as follows:

SELECT Column1, Column2...............
FROM Table
WHERE Column_Name LIKE ‘Char_String’;

In the above syntax, Char_String is the pattern with which the Column_Name will be compared.
The pattern is a value having the data type CHAR or VARCHAR2 and contains the special
matching pattern characters: percent sign (%) and underscore (_).

The percent sign (%) denotes single number or multiple numbers of unknown characters, and
underscore sign (_) denotes only an unknown character.

For example:

SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY FROM EMPLOYEES
WHERE FIRST_NAME LIKE ‘M%’;

The above query will return all the rows of EMPLOYEES table where the FIRST_NAME starts
with letter M. The output of the above query is shown in Figure 3-21.

Retrieving Data in SQL 3-23

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-21 Query showing the use of the (%) percent sign with the LIKE operator

The following example will illustrate the use of the LIKE operator with the matching pattern
characters: percent sign (%) and underscore (_).

Example 1

Write queries that will illustrate the use of the LIKE operator with the matching pattern characters
percent sign (%) and underscore (_).

The following steps are required to use the LIKE operator.

1.	 In SQL Worksheet, enter the following SQL query to retrieve the rows in which the first
name of employees begins with the letter A:

	 SELECT FIRST_NAME, SALARY, JOB_ID, COMMISSION_PCT, HIRE_DATE
	 FROM EMPLOYEES WHERE FIRST_NAME LIKE ‘A%’;

	 In the above example, the percent sign (%) used after the character A in the LIKE
operator represents any possible character or a set of characters that may appear after A.
Thus, the above query will return all those employees whose first name begins with the
character A.

2.	 In SQL Worksheet, enter the following SQL query to retrieve the rows in which the name
of employees contains the word en:

	 SELECT FIRST_NAME, SALARY, JOB_ID, COMMISSION_PCT, HIRE_DATE
	 FROM EMPLOYEES WHERE FIRST_NAME LIKE ‘%en%’;

	 The above query will return all those employees whose first name contains the characters en.
Note that this character set may appear anywhere in the name of the employees.

3.	 In SQL Worksheet, enter the following SQL query to retrieve the rows in which the last
name of employee is similar to Olsen and Olson. In these names, the first two and the last

3-24					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
one character will remain the same. This can be done by using the underscore (_) with the
LIKE operator.

	
	 SELECT FIRST_NAME, LAST_NAME, SALARY, JOB_ID, COMMISSION_PCT, 	
	 HIRE_DATE FROM EMPLOYEES WHERE LAST_NAME LIKE ‘Ol__n’;

	 In the above example, the underscore sign (_) used twice between Ol and s in the LIKE
operator represents any possible two characters that might appear between Ol and s.
The output of the above query is shown in Figure 3-22.

Figure 3-22 Query showing the use of the (_) underscore with the LIKE operator

BETWEEN and NOT BETWEEN Operators
The BETWEEN operator is used in the WHERE clause to select a range of data between two
values or expressions. The syntax for using the BETWEEN operator is as follows:

SELECT Column1, Column2...............
FROM Table	
WHERE Column_Name BETWEEN Value1 AND Value2;

	
In the above syntax, BETWEEN is a keyword. Value1 and Value2 are the start and end values
respectively. Note that the start value Value1 should always be less than the end value Value2.

The above SQL statement will return the records where Column_Name is within the range of
Value1 and Value2. The BETWEEN operator can be used in any valid SQL statement such as
SELECT, INSERT, UPDATE, or DELETE.

For example:

In SQL Worksheet, enter the following SQL query to retrieve the rows from the EMPLOYEES
table having employee id between 190 and 200:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY,JOB_ID,HIRE_DATE FROM EMPLOYEES
WHERE EMPLOYEE_ID BETWEEN 190 AND 200;

The above query will return the details of employees having employee id between 190 and 200,
as shown in Figure 3-23.

Retrieving Data in SQL 3-25

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-23 Query showing the use of the BETWEEN operator

The following example will illustrate the use of the BETWEEN operator with the DATE data type:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY,JOB_ID,HIRE_DATE FROM EMPLOYEES
WHERE HIRE_DATE BETWEEN TO_DATE(‘25/09/2005’, ‘dd/mm/yy’)
AND TO_DATE(‘25/01/2006’, ‘dd/mm/yy’);

The preceding query will return all details of employees having hire date between Sept 25, 2005
and Jan 25, 2006, as shown in Figure 3-24.

Figure 3-24 Query showing the use of the BETWEEN operator with the DATE data type

3-26					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
The above SQL statement is equivalent to the following SQL statement:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY,JOB_ID,HIRE_DATE FROM EMPLOYEES
WHERE HIRE_DATE >= TO_DATE(‘25/09/2005’, ‘dd/mm/yy’)
AND HIRE_DATE <= TO_DATE(‘25/01/2006’, ‘dd/mm/yy’);

 	
NOT BETWEEN
You can combine the BETWEEN operator with the NOT operator. The NOT BETWEEN
operator is used to select a range of data that does not exist between the two given values or
expressions.

For example:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY, JOB_ID, HIRE_DATE FROM EMPLOYEES
WHERE EMPLOYEE_ID NOT BETWEEN 105 AND 201;

The above query will return all details of those employees whose EMPLOYEE_ID is not between
105 and 201, as shown in Figure 3-25.

Figure 3-25 Query showing the use of the NOT BETWEEN operator

The above query can be also written as:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY,JOB_ID,HIRE_DATE FROM EMPLOYEES
WHERE EMPLOYEE_ID < 105 OR EMPLOYEE_ID > 201;

Retrieving Data in SQL 3-27

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

IN and NOT IN Operators
The IN operator is used to compare a value with each value in a list or returned by a query. The
syntax for using the IN operator is as follows:

SELECT Column1, Column2............... FROM Table
WHERE Column_Name IN (Value1, Value2, Value3,... Value_n|
Select_statement);

The above SQL statement will return all those records in which Column_Name is Value1,
Value2, Value3, Value_n. The values in the parenthesis can be one or more, with each
value separated by a comma. The values can be characters or numerical. The IN operator can
be used with any valid SQL statement: SELECT, INSERT, UPDATE, or DELETE.

For example:

In SQL Worksheet, enter the following query to retrieve details of those employees whose
employee numbers are 190, 195, and 200.

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY,JOB_ID,HIRE_DATE, MANAGER_ID FROM EMPLOYEES
WHERE EMPLOYEE_ID IN(190, 195, 200);

The list of values enclosed in the parenthesis is called an inlist. The above query has an inlist
with three values (190, 195, 200). The above query will return the details of those employees
whose employee number is same as in the inlist, as shown in Figure 3-26.

Figure 3-26 Query showing the use of the IN operator

The following example will illustrate the use of the IN operator with string values in the inlist.

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY, JOB_ID, HIRE_DATE, MANAGER_ID FROM EMPLOYEES
WHERE JOB_ID IN(‘AC_ACCOUNT’, ‘AD_VP’);

The above query will list the names of all employees having AC_ACCOUNT and AD_VP as
their JOB_ID, as shown in Figure 3-27. In each of these queries, the IN operator has been used
to select the data based on multiple constant values.

3-28					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-27 Query showing the use of the IN operator with string inlist

NOT IN
You can combine the IN operator with the NOT operator. The NOT IN operator works just
opposite to the IN operator. The syntax for using the NOT IN operator is as follows:

	 SELECT Column1, Column2............... FROM Table
	 WHERE Column_Name NOT IN (Value1, Value2, Value3,.......);

For example:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”, SALARY,
JOB_ID, HIRE_DATE, MANAGER_ID FROM EMPLOYEES
WHERE DEPARTMENT_ID NOT IN (30, 50, 60, 80, 100);

The above query will return the employee details those employees whose department number
is not 30, 50, 60, 80, and 100 from the EMPLOYEES table. The output of the above query is
shown in Figure 3-28.

Figure 3-28 Query showing the use of the NOT IN operator with string inlist

Retrieving Data in SQL 3-29

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

EXISTS and NOT EXISTS Operators
The EXISTS operator is used to check the existence of those rows whose values match with the
subquery. The subquery can be a query on the same or different tables, or a combination of both
tables used in main query. When a subquery returns a single value, it means that the operator
has achieved the target. The syntax for using the EXISTS operator is as follows:

SELECT Column_Name
FROM Table1
WHERE EXISTS (SELECT Column_Name FROM Table2);

The EXISTS operator can be used with any valid SQL statement: SELECT, INSERT, UPDATE,
or DELETE. In most cases, this type of query is used with a standard join to improve performance.
The EXISTS operator typically provides better performance than the IN operator.

Note
You will learn about subqueries later in this chapter.

For example:

SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY, JOB_ID,
HIRE_DATE, DEPARTMENT_ID FROM EMPLOYEES E WHERE EXISTS
(SELECT DEPARTMENT_ID FROM DEPARTMENTS D
WHERE E.DEPARTMENT_ID =60);

The output of the above query is shown in Figure 3-29:

Figure 3-29 Query showing the use of the EXISTS operator

NOT EXISTS
You can also combine the EXISTS operator with the NOT statement. The NOT EXISTS
operator works just opposite to the EXISTS operator. The syntax for using the NOT EXISTS
operator is as follows:

SELECT Column_Name FROM Table1
WHERE NOT EXISTS (SELECT Column_Name FROM Table2);

3-30					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
For example:

SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY, JOB_ID,
HIRE_DATE, DEPARTMENT_ID FROM EMPLOYEES E WHERE NOT EXISTS
(SELECT DEPARTMENT_ID FROM DEPARTMENTS D
WHERE E.DEPARTMENT_ID IN (30, 50, 60, 80, 100);

The above query will return the number and name of the departments from the DEPARTMENTS
table, in which there are no records of DEPARTMENT_ID in the EMPLOYEES table. The
output of the above query is shown in Figure 3-30.

Figure 3-30 Query showing the use of the NOT EXISTS operator

IS NULL and IS NOT NULL Operators
The IS NULL and IS NOT NULL operators are used to find the NULL and not NULL values
respectively. The IS NULL operator returns TRUE, when the value is NULL; and FALSE, when
the value is not NULL. The IS NOT NULL operator returns TRUE, when the value is not
NULL; and FALSE, when the value is NULL.

The following example will illustrate the use of the IS NULL operator:

SELECT * FROM EMPLOYEES WHERE COMMISSION_PCT IS NULL;

The above SQL query will return all records from the EMPLOYEES table where
COMMISSION_PCT contains a NULL value.

The following example will illustrate the use of the IS NOT NULL operator:

SELECT * FROM EMPLOYEES WHERE COMMISSION_PCT IS NOT NULL;

Retrieving Data in SQL 3-31

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The above SQL query will return all records from the EMPLOYEES table where
COMMISSION_PCT does not contain a NULL value.

Set Operators
Sometimes, you may need to combine the results of two or more SELECT statements. Oracle
database provides the set operators to meet this requirement.

The set operators are used to combine the data of similar type from more than one query. Oracle
SQL supports the following four set operators:

1.	 UNION ALL 	
2.	 UNION
3.	 MINUS
4.	 INTERSECT

The SQL statements containing these operators are referred as compound queries and each
SELECT statement in a compound query is referred to as a composite query. You can combine
two SELECT statements into a compound query by a set operator. This is possible only when
the SELECT statement satisfies the following two conditions:

1.	 The result sets of both the queries must have same number of columns.

2.	 The data type of each column in the second result set must match the data type of its
corresponding column in the first result set.

These conditions are also referred to as union compatibility conditions. The term union
compatibility is used here even though these conditions apply to other set operations as well.
The set operations are often called as vertical joins because the result is formed by combining
the data from two or more SELECT statements based on columns instead of rows. The syntax
of a query involving a set operator is as follows:

<component query>
{UNION | UNION ALL
| MINUS | INTERSECT}
<component query>

The keywords UNION, UNION ALL, MINUS, and INTERSECT are set operators. You can
have more than two component queries in a composite query, but the set operators used in the
composite query will always be one less than the number of components used.

The following sections discuss syntax, examples, rules, and restrictions for the four set operators.

UNION ALL Operator
This operator combines the results of two or more queries into a single result set. This
operation returns the rows that are retrieved by either of the queries. The UNION ALL operator
allows the duplicate rows in the result set.

3-32					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
The UNION ALL operator is used when you want duplicate rows to occur in the result set. The
syntax for using UNION ALL is as follows:

SELECT statement
UNION ALL
SELECT statement;

In the above syntax, the UNION ALL operator will join the result set of the two SELECT
statements.

For example:

SELECT JOB_ID FROM EMPLOYEES
UNION ALL
SELECT JOB_ID FROM JOBS;

The above example generates a list of job ids from the EMPLOYEES and JOBS tables.

UNION Operator
This operator combines the results of two or more queries into a single result set. The single
result set consists of distinct rows returned by all queries. The UNION operator returns the
distinct rows retrieved by either of the queries.

Unlike the UNION ALL operator, the UNION operator eliminates duplicate rows from the
result set. The syntax for using the UNION operator is as follows:

SELECT statement
UNION
SELECT statement;

In the above syntax, the UNION operator joins the result sets of two SELECT statements and
eliminates duplicate rows.

For example:

SELECT JOB_ID FROM EMPLOYEES
UNION
SELECT JOB_ID FROM JOBS;

The above example will generate a list of distinct job ids from the EMPLOYEES and JOBS
tables. The UNION operator returns only the distinct rows from either of the queries.

The following example will illustrate the use of the UNION operator with the ORDER BY clause:

SELECT EMPLOYEE_ID, JOB_ID, DEPARTMENT_ID FROM EMPLOYEES
UNION
SELECT EMPLOYEE_ID, JOB_ID, DEPARTMENT_ID FROM JOB_HISTORY
ORDER BY 2; 	

Retrieving Data in SQL 3-33

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

MINUS Operator
The MINUS operator is used to return the difference between two sets. This operator returns
only those rows that exist in the first query but not in the second query. The syntax for using
the MINUS operator is as follows:

SELECT statement
MINUS
SELECT statement;

In the above syntax, the MINUS operator joins the result set of the two SELECT statements and
returns only the rows that are not in the second SELECT statement.

For example:

SELECT EMPLOYEE_ID, JOB_ID, DEPARTMENT_ID FROM EMPLOYEES
MINUS
SELECT EMPLOYEE_ID, JOB_ID, DEPARTMENT_ID FROM JOB_HISTORY
ORDER BY 2;

The above example will generate a list of employees which are current in job. The above query
will return EMPLOYEE_ID, JOB_ID, and DEPARTMENT_ID from the EMPLOYEES table
which are not in the JOB_HISTORY table.

INTERSECT Operator
The INTERSECT operator is used to return all distinct rows returned by the different SELECT
queries. The syntax for using the INTERSECT operator is as follows:

SELECT statement
INTERSECT
SELECT statement;

In the above syntax, the INTERSECT operator joins the result set of the two SELECT
statements and then returns the distinct result set retrieved by both SELECT statements.

For example:

SELECT DEPARTMENT_ID FROM DEPARTMENTS
INTERSECT
SELECT DEPARTMENT_ID FROM EMPLOYEES;

The above example will generate a list of distinct department numbers from the DEPARTMENTS
and EMPLOYEES tables. The INTERSECT operator returns only the distinct rows from either
of the queries.

The following example will illustrate the use of the INTERSECT operator with the ORDER
BY clause:

3-34					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
SELECT DEPARTMENT_ID FROM DEPARTMENTS
INTERSECT
SELECT DEPARTMENT_ID FROM EMPLOYEES
ORDER BY 1;

Rules and Restrictions on Set Operations
The following list summarizes some simple rules, restrictions, and notes on Set operations:

1.	 Set operators are not applied on the columns of the data type BLOB, CLOB, BFILE, and
VARRAY. However, they can be applied on the nested table columns.

2.	 The UNION, INTERSECT, and MINUS operators are not valid on the columns having
the data type LONG.

3.	 Set operators are not used with those SELECT statements that contain the expression of
the TABLE collection.

4. 	 The FOR UPDATE clause cannot be used with the set operators.

5.	 The number and size of the columns in the SELECT list of the component queries are
limited by the block size of the database. The total bytes of the selected columns cannot
exceed one database block.

Operator Precedence
Operator precedence refers to the order in which Oracle evaluates different operators within the
same expression. If an expression contains multiple operators, Oracle will evaluate the higher
precedence operators first before evaluating the lower precedence operators. In case of operators
having equal precedence, Oracle evaluates them from left to right within an expression.

Table 3-2 lists the levels of operator precedence from high to low. Operators listed on the same
line have the same precedence.

Table 3-2 The SQL operator precedence

Operator Operation
+, - identity, negation (Unary operator)
*, / multiplication, division
+, -, || addition, subtraction, concatenation
=, !=, <, >, <=, >=, LIKE,
BETWEEN, IN

comparison

NOT negation
AND logical AND operation
OR logical OR operation

Retrieving Data in SQL 3-35

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

For example:

Consider the following expression:

	 1+2*3

In the above expression, Oracle will first multiply 2 by 3 and then add the result to 1 because
multiplication has higher precedence than addition.

You can use the parentheses in the above expression to override operator precedence, as given
below:
	
	 (1+2)*3

In this expression, Oracle will evaluate the expression inside the parentheses first, then evaluate
the expressions outside the parentheses.

CASE EXPRESSION
CASE expression is used to perform multiple condition comparison within a single statement.
It is similar to the IF-THEN-ELSE statement. It evaluates from top to bottom and if a condition
is true, the associated THEN clause is executed and the process exits the CASE expression by
executing the END statement. If no condition returns true, it executes the ELSE part.

The syntax for using the CASE expression is as:

CASE [expression]
 WHEN condition_1 THEN result_1
 WHEN condition_2 THEN result_2
 ...
 WHEN condition_n THEN result_n
 ELSE result
END

The keywords and parameters used in the above syntax are explained next.

expression
It is optional and its value is compared with the list of conditions (ie: condition_1, condition_2,
... condition_n).

condition_1, condition_2, ... condition_n
These conditions are evaluated in the order they are listed and all must be of same data type.
Once a condition is evaluated to true, the CASE expression returns the result and the rest of
the conditions are not evaluated further.

result_1, result_2, ... result_n
These are the values returned once the condition is found to be true. All the results must have
the same data type.

3-36					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
For example:

You could use the CASE statement in a SQL statement as follows:

SELECT EMPLOYEE_ID, FIRST_NAME|| ‘ ’ ||LAST_NAME, SALARY,
CASE JOB_ID
	 WHEN ‘AD_PRES’ THEN ‘President’
	 WHEN ‘AC_MGR’ THEN ‘Accounting Manager’
	 WHEN ‘AD_VP’ THEN ‘Administration Vice President’
	 WHEN ‘FI_MGR’ THEN ‘Finance Manager’
	 ELSE ‘ASSISTANT’
END
FROM EMPLOYEES;

You can also write the above SQL statement using the CASE statement as follows:

SELECT EMPLOYEE_ID, FIRST_NAME|| ‘ ’ ||LAST_NAME, SALARY,
CASE
	 WHEN JOB_ID=’AD_PRES’ THEN ‘President’
	 WHEN JOB_ID=’AC_MGR’ THEN ‘Accounting Manager’
	 WHEN JOB_ID=’AD_VP’ THEN ‘Administration Vice President’
	 WHEN JOB_ID=’FI_MGR’ THEN ‘Finance Manager’
	 ELSE ‘ASSISTANT’
END
FROM EMPLOYEES;

In the above example, if no condition evaluates to true, then the CASE expression will return the
value associated with the ELSE clause. If the ELSE clause is omitted and no condition evaluates
to true, the CASE expression will return NULL.

SQL CLAUSES
The following are the clauses used in Oracle to retrieve the desired data:

ORDER BY Clause
The ORDER BY clause allows you to arrange the data retrieved from a table in a sorted order.
The rows retrieved are sorted either in the ascending or in the descending order.

The syntax for using the ORDER BY clause is as follows:

SELECT Column_name FROM Table_name
WHERE Condition
ORDER BY columns ASC/DESC;

In the above syntax, ORDER BY is the keyword and Column_name is the name of column
of the table Table_name. The result will be sorted depending upon the column or columns
specified in the ORDER BY clause. The keyword ASC indicates that the result set will be sorted
in the ascending order and DESC indicates that the result set will be sorted in the descending

Retrieving Data in SQL 3-37

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

order. If the ASC or DESC value is omitted, Oracle will assume the ascending order as the
default value.

For example:
								

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY, JOB_ID FROM EMPLOYEES
WHERE JOB_ID=’IT_PROG’ ORDER BY ENAME;

In the above example, the query will return the names of the employees whose JOB_ID is
IT_PROG. As discussed earlier, if you omit the keyword ASC/DESC, Oracle will take the default
value as ASC and, therefore, the records will be sorted by the ENAME field in ascending order,
as shown in Figure 3-31.

Figure 3-31 Sorting records by ENAME

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
SALARY, JOB_ID FROM EMPLOYEES
WHERE JOB_ID=’IT_PROG’ ORDER BY ENAME DESC;

The above query will return the names of employees, whose JOB_ID is IT_PROG. Here, the
records will be sorted by the ENAME field in the descending order, as shown in Figure 3-32.

Figure 3-32 Sorting records by ENAME (DESC)

3-38					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
You can also sort records by position of the fields in the result set, where the first field is on
position 1 and the next field is on position 2, and so on.

For example, the query
	

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”, SALARY,
JOB_ID FROM EMPLOYEES WHERE JOB_ID=‘IT_PROG’ ORDER BY 1 DESC;

and

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”, SALARY,
JOB_ID FROM EMPLOYEES WHERE JOB_ID=‘IT_PROG’ ORDER BY 3 DESC;

sort the records by the position of fields.

The above queries will return all the records sorted by the position of the field in descending order.
The first query will sort the records based on the EMPLOYEE_ID field because EMPLOYEE_ID
is on position 1 in the query. In the second query, the records will be sorted by the SALARY
field because SALARY is on position 3 in the query. The output of the second query is shown
in Figure 3-33.

Figure 3-33 Sorting records by the position field

GROUP BY Clause
The GROUP BY clause is used in the SELECT statement to collect data from multiple records
and group the results that have matching values for one or more columns. The syntax for using
the GROUP BY clause is as follows:

SELECT Column1, Column2, ..., Column-n
FROM Table_name WHERE Condition
GROUP BY Column1, Column2, ..., Column-n;

In the above syntax, the GROUP BY is a keyword and Column1, Column2, and Column-n are
the names of columns of the table Table_name. You can group the result set by one or more
columns.

Retrieving Data in SQL 3-39

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

You can also use the aggregate function in the SELECT statement with the GROUP BY
clause. The syntax for using the GROUP BY clause while using the aggregate function in the
SELECT statement is as follows:

SELECT Column1, Column2, ..., Column-n, aggregate_Function(Expression)
FROM Table_name WHERE Condition
GROUP BY Column1, Column2, ..., Column-n;

In the above syntax, the aggregate_Function can be any aggregate function such as SUM,
COUNT, MIN, or MAX. These aggregate functions will be discussed in the later chapter.

Given below are some examples showing the use of the GROUP BY clause with different
aggregate functions.

The following example will illustrate the use of the GROUP BY clause with the SUM function:

SELECT JOB_ID, SUM(SALARY) FROM EMPLOYEES GROUP BY JOB_ID;

In the above example, the SQL query will return the job id of the employees along with the
total salary (for example, total salary of the employees having job id PU_CLERK), as shown in
Figure 3-34.

Figure 3-34 The GROUP BY clause with
the SUM function

3-40					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
The following example will illustrate the use of the GROUP BY clause with the COUNT function.

SELECT JOB_ID, COUNT(*) 	
FROM EMPLOYEES
GROUP BY JOB_ID;

The above SQL query will return the job id of employees with the total number of employees
in each job id. Figure 3-35 shows the output of this query.

Figure 3-35 The GROUP BY clause with
the COUNT function

The following example will illustrate the use of the GROUP BY clause with the MIN function:
	

SELECT JOB_ID, MIN(SALARY) 	
FROM EMPLOYEES
GROUP BY JOB_ID;

In the above example, the SQL query will return the job id of employees with the minimum salary in
each job id from the EMPLOYEES table.

The following example will illustrate the use of the GROUP BY clause with the MAX function:

Retrieving Data in SQL 3-41

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

SELECT JOB_ID, MAX(SALARY) 	
FROM EMPLOYEES
GROUP BY JOB_ID;

In the above example, the SQL query will return the job description of the employees with
the maximum salary in each job id from the EMPLOYEES table.

HAVING Clause
The HAVING clause is used in the SELECT statement to filter the data returned by the GROUP
BY clause. The HAVING clause is similar to the WHERE clause and it is evaluated once Oracle
has evaluated the grouped values. The syntax for using the HAVING clause is as follows:

SELECT Column1, Column2,, Column-n
FROM Tables
WHERE Condition
GROUP BY Column1, Column2,, Column_n
HAVING SearchCondition;

In the above syntax, the SearchCondition is a boolean expression, and it can contain only
grouping columns that means the columns that are part of the aggregate expression and the
columns that are part of a subquery.

For example:

SELECT JOB_ID, SUM(SALARY)
FROM EMPLOYEES GROUP BY JOB_ID
HAVING SUM(SALARY) >= 15000;

The above SQL query will return the job ids and total salary of the job ids having sum of salaries
greater or equal to 15000. The output of the above query is shown in Figure 3-36.

Figure 3-36 Using of the HAVING clause

3-42					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
Consider the following query:

SELECT JOB_ID, SUM(SALARY)
FROM EMPLOYEES GROUP BY JOB_ID
HAVING EMPLOYEE_ID >= 200;

The above query is not valid because EMPLOYEE_ID is not a grouping column, it is not a part
of the aggregate expression, and it does not appear in the subquery. Therefore, this query will
return an error with the message not a GROUP BY expression, as shown in Figure 3-37.

Figure 3-37 Invalid use of the HAVING clause

You can also use the aggregate function in the SELECT statement with the HAVING clause.
The syntax for using the HAVING clause with an aggregate function in the SELECT statement
is as follows:

SELECT column_name, aggregate_function(expression/column_name)
FROM Table_name
WHERE SearchCondition
GROUP BY column_name
HAVING SearchCondition;

In the above syntax, the aggregate_function can be any aggregate function such as SUM,
COUNT, MIN, MAX, and so on.

Some examples showing use of the HAVING clause with the different aggregate functions are
as follows:

The following example will illustrate the use of the HAVING clause with the AVG function:

SELECT JOB_ID, AVG(SALARY)
FROM EMPLOYEES
GROUP BY JOB_ID
HAVING AVG(SALARY) >= 10000;

In the above SQL query, the AVG function will return the average salary of the employees. The
HAVING clause will filter the results returned by the GROUP BY clause. As a result, this query

Retrieving Data in SQL 3-43

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

will return those job id’s and their average salary which are greater than or equal to 10000, as
shown in Figure 3-38.

Figure 3-38 Using the AVG function

The following example will illustrate the use of the HAVING clause with the MAX function:	
		

SELECT DEPARTMENT_ID, MAX(SALARY)
FROM EMPLOYEES
GROUP BY DEPARTMENT_ID
HAVING AVG(SALARY) >= 8000;

In the above SQL query, the MAX function will return the maximum salary of the employees.
The HAVING clause will filter the results returned by the GROUP BY clause. As a result, this
query will return those department numbers in which the maximum salary of an employee is
greater than 8000, as shown in Figure 3-39.

Figure 3-39 Using the HAVING clause with the MAX function

3-44					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
The following example will illustrate the use of the HAVING clause with the MIN function:

SELECT DEPARTMENT_ID, MIN(SALARY)
FROM EMPLOYEES
GROUP BY DEPARTMENT_ID
HAVING MIN(SALARY) >= 8000;

In the above SQL query, the MIN function will return the minimum salary of the employees.
The HAVING clause will filter the results returned by the GROUP BY clause. As a result, this
query will return those department numbers in which minimum salary of an employee is greater
than 8000.

The following example will illustrate the use of the HAVING clause with the SUM function:

SELECT DEPARTMENT_ID, SUM(SALARY)
FROM EMPLOYEES
GROUP BY DEPARTMENT_ID
HAVING SUM(SALARY) >= 8000;

In the above query, the SUM function will return the total salary of each department. The
HAVING clause will filter the result set and return the department numbers having total salary
greater than 8000.

SUBQUERIES
Query within a query is called a subquery. The statement containing a subquery is called the
parent statement. Subqueries are used to retrieve data from tables and the retrieved data depends
on the value in the table itself. The output of a subquery is the input to the main query and on
the basis of output of the subquery, the result set of whole query is generated.

The syntax for using a subquery is as follows:

SELECT Column1, Column2,........... FROM Table_name
WHERE Column_X operator (SELECT Column_Names
				 FROM Table_name
				 WHERE Search_Condition);

In the above syntax, the SELECT statement appearing within parenthesis is a subquery, and the
rest of the query is the main query. The output of the subquery is the input to the main query.
The WHERE clause that appears in the subquery is optional. Here, subquery can return single
or multiple values. Subqueries can be used in the INSERT, UPDATE, and DELETE statements.

For example:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”, SALARY,
JOB_ID, DEPARTMENT_ID FROM EMPLOYEES
WHERE SALARY > (SELECT SALARY FROM EMPLOYEES
			 WHERE FIRST_NAME = ‘Clara’);

Retrieving Data in SQL 3-45

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

In the above query, the inner query will return the salary of the employee named Clara. This
salary will be compared with the outer query and then only those rows will be returned that meet
the condition in the WHERE clause. The output of the above query is shown in Figure 3-40.

Figure 3-40 Retrieving data using the subquery

Subqueries can be of three types: single-row, multiple-row, and multiple-column subqueries.
These types of subqueries are discussed next.

Single-Row Subqueries
Single-row subqueries return only one row as a result. The operators that can be used with
single-row subqueries are =, >, >=, <, <=, and <>.

Given below is a list of examples that illustrate the use of single-row subqueries in different
conditions.

In order to list the employees who earn less than the average salary in any organization, the
group function AVG must be used to calculate the average salary of employees. However, the
group function cannot be used with the WHERE clause. In such a case, you can use a subquery.

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”, SALARY,
JOB_ID, DEPARTMENT_ID FROM EMPLOYEES
WHERE SALARY > (SELECT AVG(SALARY) FROM EMPLOYEES
			 WHERE JOB_ID=’PU_MAN’);

In the above example, the main query will return the details of all those employees whose salary
is greater than the average salary. If subquery returns more than one value, the IN operator
must be used. The output of the above query is shown in Figure 3-41.

3-46					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-41 Retrieving data using the single-row subquery

The following example will illustrate the use of the MAX function with a subquery:

SELECT E.*, D.DEPARTMENT_NAME FROM EMPLOYEES E, DEPARTMENTS D
WHERE E.DEPARTMENT_ID = D.DEPARTMENT_ID AND
E.SALARY > (SELECT MAX(SALARY) FROM EMPLOYEES
		 WHERE JOB_ID=’PU_MAN’);

In the above example, the main query will return all the fields from the EMPLOYEES table and
only one field called the DEPARTMENT_NAME from the DEPARTMENTS table. The query will
return only those records in which the salary of an employee is greater than the maximum salary
of the employees having job id PU_MAN and have matching values for the DEPARTMENT_ID
column in both the EMPLOYEES and DEPARTMENT tables.

Multiple-Row Subqueries
The subquery that returns multiple rows is called a multiple-row subquery. You need to use the
comparison operators IN, ALL, and ANY to handle the multiple rows returned by the subquery.

The following example will illustrate the use of the IN operator with a subquery:

SELECT * FROM EMPLOYEES
WHERE EMPLOYEE_ID IN (SELECT EMPLOYEE_ID FROM EMPLOYEES
				 WHERE COMMISSION_PCT >= 0.25);

In the above example, the main query will return more than one record because the inner query
will return more than one value. Also, the subquery will return those employee numbers from the
EMPLOYEES table whose COMMISSION_PCT is greater than or equal to 0.25.		

Retrieving Data in SQL 3-47

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Multiple-Column Subqueries
A multiple-column subquery returns more than one column. In a multiple-column subquery,
the resulting rows of the subquery are evaluated pair-wise (that is column to column and row to
row comparisons) in the main query.

For example:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
DEPARTMENT_ID FROM EMPLOYEES
WHERE (EMPLOYEE_ID, DEPARTMENT_ID) IN(SELECT E.EMPLOYEE_ID,
D.DEPARTMENT_ID FROM EMPLOYEES E, DEPARTMENTS D
WHERE E.DEPARTMENT_ID = D.DEPARTMENT_ID);

In the above query, the inner query returns two columns, EMPLOYEE_ID and DEPARTMENT_ID.
Here, the comparison is column to column that means the column values are compared as a
pair and not individually.

CORRELATED SUBQUERIES
A correlated subquery is the SELECT statement that is nested inside another query containing the
reference of one or more columns in the outer query.

For example:

SELECT EMPLOYEE_ID, MANAGER_ID, FIRST_NAME || ‘ ’ || LAST_NAME
“ENAME”, SALARY FROM EMPLOYEES OuterE
WHERE SALARY > (SELECT AVG(SALARY) FROM EMPLOYEES InnerE
WHERE InnerE.EMPLOYEE_ID = EMPLOYEE_ID);

In the above correlated subquery, you can see that inner query contains a reference to InnerE.
EMPLOYEE_ID. This reference compares the outer query’s EMPLOYEE_ID with the inner
query’s EMPLOYEE_ID. When the above query is executed, the Oracle will execute the inner
query for each employee record. The inner query will calculate the average salary of the particular
employee for the row being processed in the outer query. This correlated subquery determines
whether the inner query returns a value that meets the condition of the WHERE clause. The
output of the above query is as follows:

JOIN
Sometimes you may need to retrieve records from more than one table. To do so, the Oracle
database provides a technique called Join. Joins are used to combine the result set of one or
more tables. A join operation can be performed whenever two or more tables are listed in the
FROM clause of an SQL statement. In order to query data from more than one table, you need
to identify common columns that relate the tables. If any two of these tables have a common
column name, then you must qualify all references to these columns throughout the query with
table names to avoid ambiguity.

3-48					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
Join means accessing rows from one or more tables. A join operation is essential while retrieving
data from one or more tables. The general syntax of a SELECT query that joins two tables is
as follows:

SELECT Column1, Column2,...............
FROM Table1, Table2
WHERE Table1.Join_Column = Table2.Join_Column;

In the above syntax, the SELECT clause lists the columns that you want to retrieve and the
FROM clause lists all table names that are involved in the join operation. On the basis of the
join condition (Table1.Join_Column = Table2.Join_Column), the rows from the tables Table1
and Table2 will be retrieved. This means that only those rows will be retrieved from the tables
that meet the join condition. If you want to retrieve a column that exists in more than one
table, you need to qualify the column name in the SELECT clause, so that Oracle returns the
specific column. To qualify a column in the SELECT clause, you have to specify the table name
containing the column, followed by a period (.) and column name. Joins are of various types
and these are discussed next.

INNER JOIN
INNER JOIN joins two or more tables and returns only those rows from the tables that follow
the join condition. The syntax for using the INNER JOIN is as follows:

SELECT Column1, Column2,...
FROM Table1, Table2,...
WHERE Table1.Column1=Table2.Column1...

In the above syntax, the join condition (Table1.Column1=Table2.Column1) appears in the
WHERE clause.

For example:

SELECT EMPLOYEE_ID, FIRST_NAME ||‘ ’|| LAST_NAME “ENAME”,
DEPARTMENT_NAME FROM EMPLOYEES, DEPARTMENTS
WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID;

The above SQL query will return the name of the employees with their employee id and
department name. It will return only those rows where the department number of the table
EMPLOYEES matches with department number of the table DEPARTMENTS.

Note
You can add more than one condition to the WHERE clause.

The syntax for using the ISO/ANSI INNER JOIN is as follows:

SELECT Column1, Column2,...
FROM Table1 [INNER JOIN][JOIN] Table2
[ON][USING] Table1.Column1=Table2.Column1

Retrieving Data in SQL 3-49

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

In the above syntax, the SELECT clause lists columns and the FROM clause lists the tables
involved in the join operation.

JOIN and INNER JOIN
These keywords indicate that the join operation is being performed. This clause is used to replace
the comma-delimited used between tables in the FROM clause.

ON
The ON clause is used to specify a join condition. This clause is used to replace the join condition
in the WHERE clause.

For example:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
DEPARTMENT_NAME FROM EMPLOYEES INNER JOIN DEPARTMENTS
ON EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID;

The above SQL query will return only those rows, where the department number in the
EMPLOYEES table matches with the department number in the DEPARTMENTS table.

USING (column)
This clause is also used to replace the join condition in the WHERE clause. This clause is used
when several columns share the same name in tables that appear in the FROM clause. It is
recommended not to qualify the column name with a table name or table alias within this clause.

For example:

SELECT EMPLOYEE_ID, SALARY, DEPARTMENT_NAME
FROM EMPLOYEES INNER JOIN DEPARTMENTS
USING(DEPARTMENT_ID);

The above SQL query will return only those rows from the tables EMPLOYEES and
DEPARTMENTS, where the department numbers match.

The following example will illustrate the use of INNER JOIN with the WHERE clause:

SELECT EMPLOYEE_ID, FIRST_NAME || ‘ ’ || LAST_NAME “ENAME”,
DEPARTMENT_NAME FROM EMPLOYEES INNER JOIN DEPARTMENTS
ON EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID
WHERE EMPLOYEES.JOB_ID IN(‘AC_MGR’, ‘ST_MAN’, ‘IT_PROG’);

The above SQL query will return only those rows where the department number of the
EMPLOYEES table matches with the department number of the DEPARTMENTS table provided
the employee’s job is AC_MGR, ST_MAN, or IT_PROG. You can also use the WHERE clause
in the ISO/ANSII INNER JOIN semantics for further filtering of records.

3-50					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

OUTER JOIN
The OUTER JOIN returns all rows of a table with only those rows from another table that follow
the join condition. It also returns a null value in place of the records which do not follow the
join condition from another table. There are three types of outer joins: LEFT OUTER JOIN,
RIGHT OUTER JOIN, and FULL OUTER JOIN. These types are discussed next.

LEFT OUTER JOIN
The LEFT OUTER JOIN returns all rows of the first table (the table that appears first in the table
list of the FROM clause) and only those rows from the second table that follow the join condition.
It also returns NULL values for the non-matching (that does not follow the join condition) rows
of the second table. The syntax for using the LEFT OUTER JOIN is as follows:	
	

SELECT Column1, Column2,...
FROM Table1 LEFT OUTER JOIN Table2
ON Table1.Join_Column=Table2.Join_Column

In the above syntax, the SELECT clause lists the columns to be displayed and the FROM clause
lists the tables involved in the join operation with the table aliases. The LEFT OUTER JOIN
is a keyword that indicates that the left outer join operation is being performed. This syntax is
used to replace the comma-delimiter used between tables in the FROM clause. The ON clause
in the syntax is used to specify a join condition. This syntax is used to replace the join condition
in the WHERE clause.

For example:

SELECT EMPLOYEES.FIRST_NAME, DEPARTMENTS.DEPARTMENT_NAME
FROM EMPLOYEES LEFT OUTER JOIN DEPARTMENTS
ON EMPLOYEES.DEPARTMENT_ID=DEPARTMENTS.DEPARTMENT_ID ;

The above SQL query will return all rows from the DEPARTMENTS table and only those rows
from the EMPLOYEES table that meet the join condition. Also, it will return the NULL value
for those rows that do not follow the join condition.

RIGHT OUTER JOIN
The RIGHT OUTER JOIN returns all rows of the second table (that appears second in the
table list of the FROM clause) and only those rows from the first table that follow the join
condition. It also returns the replacement of the non-matching rows (rows that do not follow
the join condition) from the first table with a NULL value. The syntax for using the RIGHT
OUTER JOIN is as follows:

SELECT Column1, Column2,...
FROM Table1 RIGHT OUTER JOIN Table2
ON Table1.Join_Column=Table2.Join_Column

In the above syntax, the SELECT clause lists the columns to be displayed and the FROM clause
lists the tables involved in the join operation.

Retrieving Data in SQL 3-51

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The RIGHT OUTER JOIN is a keyword and indicates that the join operation is being performed.
This syntax is used to replace the comma-delimited table expressions used in the FROM and
WHERE clauses.

The ON clause specifies a join condition. This syntax is used to replace the join condition in
the WHERE clause.

For example:

SELECT FIRST_NAME, DEPARTMENT_NAME
FROM EMPLOYEES RIGHT OUTER JOIN DEPARTMENTS
ON EMPLOYEES.DEPARTMENT_ID=DEPARTMENTS.DEPARTMENT_ID ;

The above SQL query will return all rows from the EMPLOYEES table and only those rows from
the DEPARTMENTS table that meet the join condition. Also, it will return the NULL value for
those rows that do not follow the join condition.

FULL OUTER JOIN
The FULL OUTER JOIN returns all those rows from both the tables, where the rows from one
table match with the rows from the other table. The syntax for using the FULL OUTER JOIN
is as follows:

SELECT Column1, Column2,...
FROM Table1 FULL OUTER JOIN Table2
ON Table1.Join_Column=Table2.Join_Column

In the above syntax, the SELECT clause lists the columns to be displayed and the FROM clause
lists the tables involved in the join operation.

For example:

SELECT EMPLOYEES.FIRST_NAME, EMPLOYEES.SALARY,
DEPARTMENTS.DEPARTMENT_NAME FROM EMPLOYEES FULL OUTER JOIN
DEPARTMENTS ON EMPLOYEES.DEPARTMENT_ID=DEPARTMENTS.DEPARTMENT_ID ;

The above query will display two columns FIRST_NAME and SALARY from the table
EMPLOYEES, and DEPARTMENT_NAME from the table DEPARTMENTS. It will return only
those rows in which the values of the column DEPARTMENT_ID of the EMPLOYEES table
matches with the values of the column DEPARTMENT_ID of the DEPARTMENTS table. It
will also return Null values from both the tables those do not match the join condition.

Self Join
The self join joins a table to itself. It means that a self join joins one row of a table with another
row in the same table. It compares one row of a table to itself or with the other rows in the same
table. This table appears twice or more times in the FROM clause and is followed by table aliases
that qualify column names in the join condition and the SELECT clause. The syntax for using
the self join is as follows:

3-52					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
SELECT Column1, Column2,...
FROM Table1 Table_alias1, Table1 Table_alias2, ...
WHERE Table_alias1.Column1=Table_alias2.Column1...

In the above syntax, the join condition appears in the WHERE clause. The Table_alias1 and
Table_alias2 refer to the name of Table1. Also, Table_alias1.Column1 and Table_alias2.Column1
refer to Column1 from Table1.

Note
For joining a table with itself, you must use an alias for each of the tables in the FROM clause as
well as in the SELECT list and the WHERE clause.

For example:

SELECT m.FIRST_NAME || ‘ Is manager of ’ || e.FIRST_NAME
FROM EMPLOYEES m, EMPLOYEES e
WHERE m.MANAGER_ID = e.EMPLOYEE_ID;

The above query will return both employee number and employee name from the EMPLOYEES
table, as here the selfjoin retrieves rows from the same table.

Equijoin
An equijoin contains equality operator (=) in the join condition which is used to match rows
from different tables.

For example:

SELECT e.EMPLOYEE_ID, e.FIRST_NAME, e.SALARY, d.DEPARTMENT_ID,
d.DEPARTMENT_NAME FROM EMPLOYEES e, DEPARTMENTS d
WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID;

The above query will return only those rows in which the department number of the EMPLOYEES
table matches with the department number of the DEPARTMENTS table.

Cartesian Joins
The cartesian join occurs when you select data from two tables and there is no join condition.
It is a join of every row of a table with every row of another table. This only happens, when
no matching join columns are specified in the join condition for the table listed in the FROM
clause. For example, if you have two tables, namely XYZ with 100 rows, and ABC with 200 rows,
then the cartesian join will return 20,000 rows.

Consider the following query:
	

SELECT * FROM EMPLOYEES, DEPARTMENTS;

The above query will return each row of the EMPLOYEES table with each row of the
DEPARTMENTS table.

Retrieving Data in SQL 3-53

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Now consider the following query with the WHERE clause:

SELECT * FROM EMPLOYEES, DEPARTMENTS
WHERE DEPARTMENTS.DEPARTMENT_ID = 60
AND EMPLOYEES.SALARY > 5000;

The above query will return the details of employees of the department 60 having salary greater
than 5000 from the EMPLOYEES and DEPARTMENTS tables.

Antijoins
An antijoin between two tables returns those rows from the first table for which there are no
corresponding rows in the second table. It implies that antijoin returns the rows that fail to
match the rows returned by the subquery on the right side. Antijoins are written using the NOT
EXISTS or NOT IN operator.

For example:

SELECT * FROM EMPLOYEES
WHERE DEPARTMENT_ID NOT IN
(SELECT DEPARTMENT_ID FROM DEPARTMENTS
WHERE LOCATION_ID = 2500);

Semijoins
A semijoin between two tables returns the rows from the first table having one or more matches
in the second table. Semijoins are written using the EXISTS or IN operator.

For example:

SELECT * FROM DEPARTMENTS
WHERE EXISTS (SELECT * FROM EMPLOYEES
WHERE EMPLOYEES.DEPARTMENT_ID=DEPARTMENTS.DEPARTMENT_ID)
ORDER BY DEPARTMENT_NAME;

The above query will return the list of departments that have at least one employee. The
department name will appear only once in the query output, no matter how many employees
it has. The output of the above query is shown in Figure 3-42.

3-54					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-42 Retrieving data using the Semijoins

ACCEPTING VALUES AT RUNTIME
To create an interactive SQL statement, you can define variables in the SQL statement. This
allows the users to supply values at runtime, thus enhancing the ability to reuse your scripts.
Oracle lets you define variables in your scripts. An ampersand (&), followed by a variable name,
prompts for and accepts values at runtime.

For example:

The following SELECT statement queries the EMPLOYEES table based on the department
number supplied at runtime.

SELECT EMPLOYEE_ID, FIRST_NAME, JOB_ID, HIRE_DATE, SALARY
FROM EMPLOYEES
WHERE DEPARTMENT_ID = &DeptID;

After executing the above query, the Enter Substitution Value input box will be displayed, as
shown in Figure 3-43. Enter 30 as the value for the DeptID variable. Choose OK; the output
of the above query will be displayed, as shown in Figure 3-44.

Figure 3-43 The Enter Substitution Variable input box

Retrieving Data in SQL 3-55

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-44 Retrieving data using Enter Substitution Variable input box

While using substitution variables for the character or date values, you need to enclose the
variables in single quotes. Otherwise, the user will have to enclose them in quotes at runtime.
If the variables are not enclosed in single quotes, Oracle considers any non-numeric value as a
column name.

Defining User Variables
You can define substitution variables using the DEFINE command to avoid the prompt for the
value at runtime.

For example:

To define a user variable named DeptID and give it a value 60, enter and execute the following
command:

DEFINE DeptID = 60;

To confirm the definition of the variable, enter DEFINE followed by the variable name:

DEFINE DeptID;

The following output will be displayed:

DEFINE DEPTID = 60 (NUMBER)

You can use the above defined variables in the query as input value.

SELECT EMPLOYEE_ID, FIRST_NAME, JOB_ID, HIRE_DATE, SALARY,
DEPARTMENT_ID FROM EMPLOYEES WHERE DEPARTMENT_ID = &DeptID;

The output of the query is shown in Figure 3-45.

3-56					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-45 Retrieving data using the defined variables

To delete a user variable, you can use the UNDEFINE command followed by the variable name:

UNDEFINE DeptID;

Saving a Variable for a Session
Consider the following SQL query saved to a file named Demo_Ex.sql. When you execute this
script file, you will be prompted to enter a value for COL1, COL2, and COL3:

SELECT &COL1, &COL2, &COL3 FROM &TABLE_NAME
WHERE &COL4 = &VAL;

To save the above query, choose the Save option from the File Menu; the Save dialog box will
be displayed. In this dialog box, enter the Demo_Ex name in the File name edit box and choose
the Save button to save the file. The above query will be saved in the file named Demo_Ex.sql.
Now, you can execute this file by using the @ or the START command as shown below:

START Demo_Ex;

After executing the above query, the Enter Substitution Value input box will be displayed and
you will be prompted to enter value for each variable. The output of the above command is
shown in Figure 3-46.

Retrieving Data in SQL 3-57

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-46 Retrieving data using the substitution variables

Using Positional Notation for Variables
Instead of variable names, you can also use the positional notation. In this notation, the values
are assigned to variables on the basis of their positions and the variables are identified by &1,
&2, and so on. You can use this notation by using an ampersand (&), followed by a numeral in
the place of a variable name. Consider the following query:

SELECT EMPLOYEE_ID, FIRST_NAME, JOB_ID, HIRE_DATE, SALARY
FROM EMPLOYEES WHERE &1 = &2;

After executing the above query, the Enter Substitution Value input box will be displayed and
you will be prompted to enter values for &1 and &2. Enter DEPARTMENT_ID for &1 and
100 for &2. The output of the above command is shown in Figure 3-47.

Figure 3-47 Retrieving data using positional notation for variables

PIVOT AND UNPIVOT QUERIES
Piovting and unpivot are the processes of transposing rows into columns and columns into rows,
respectively. In SQL/PLSQL, pivoting and unpivoting can be achieved by using the PIVOT and
UNPIVOT clauses in the SELECT statement. These clauses are discussed next:

3-58					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

PIVOT
The PIVOT clause is used to transpose rows into columns. It accepts multiple rows, aggregates
them and transposes them into columns. The syntax for using the PIVOT clause is as follows:

SELECT * FROM
(
	 SELECT column1, column2
	 FROM tables
	 WHERE conditions
)
PIVOT
(
	 aggregate_function(column2)
	 FOR column2
	 IN (expr1, expr2, ... expr_n) | subquery
)
ORDER BY expression [ASC | DESC];

The keywords and parameters used in the above syntax are explained next.

aggregate_function(column2)
It defines the aggregate function and column(s) to be aggregated.

FOR column2
It defines the columns to be grouped and pivoted.

IN(expr1, expr2, ... expr_n)
It defines the filter for the column2 to pivot into headings in the cross-tabulation query results.

subquery
It can be used instead of a list of values for column2.

For examples:

SELECT * FROM
(
	 SELECT DEPARTMENT_ID, JOB_ID, SALARY
	 FROM EMPLOYEES
)
PIVOT
(
	 SUM(SALARY)
	 FOR DEPARTMENT_ID
	 IN (10, 20, 30, 40, 50, 60)
)
ORDER BY JOB_ID;

Retrieving Data in SQL 3-59

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The above query returns jobs with total salaries in separate columns for each department. The
output of the above query is shown in Figure 3-48.

Figure 3-48 Retrieving data using the PIVOT clause

You can also alias columns returned by the pivot query:

SELECT * FROM
(
	 SELECT DEPARTMENT_ID, JOB_ID, SALARY
	 FROM EMPLOYEES
)
PIVOT
(
	 SUM(SALARY) As Total_Salary
	 FOR DEPARTMENT_ID
	 IN (10 AS Department_10, 20 AS Department_20, 30 AS Department_30,
 	 40 AS Department_40, 50 AS Department_50, 60 AS Department_60)
)
ORDER BY JOB_ID;

The output of the above query is shown in Figure 3-49.

3-60					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 3-49 Retrieving data using the PIVOT clause with column alias

UNPIVOT
The UNPIVOT clause is the opposite of the PIVOT clause. It is used to transpose columns into
rows. The syntax for using the PIVOT clause is as follows:

SELECT ...
FROM ...
UNPIVOT [INCLUDE|EXCLUDE NULLS]
 (unpivot_clause
 unpivot_for_clause
 unpivot_in_clause)
WHERE ...

The keywords and parameters used in the above syntax are explained next.

The INCLUDE | EXCLUDE NULLS clause gives you the option of including or excluding
null-valued rows. If you omit this clause, then the unpivot operation excludes nulls.

unpivot_clause
It specifies a name for each output column that will hold measure values.

unpivot_for_clause
It specifies name for the output column resulting from an unpivot query. The data in this column
describes the measure values in the unpivot_for_clause column.

Retrieving Data in SQL 3-61

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

unpivot_in_clause
It specifies the input data columns whose names will become values in the output columns of
the unpivot_for_clause.

For example:

WITH emp_data AS (
			 SELECT EMPLOYEE_ID, JOB_ID,
			 FIRST_NAME||’ ‘||LAST_NAME “ENAME”,
 	 TO_CHAR(DEPARTMENT_ID) AS DEPARTMENT_ID,
 	 TO_CHAR(HIRE_DATE) AS HIREDATE
 	 FROM EMPLOYEES
)
SELECT EMPLOYEE_ID, JOB_ID, unpivot_col_name, unpivot_col_value
FROM emp_data
	 UNPIVOT (unpivot_col_value
	 FOR unpivot_col_name
	 IN (ENAME, DEPARTMENT_ID, HIREDATE))
	 WHERE JOB_ID IN (‘AD_PRES’,’AD_VP’,’FI_MGR’);

The output of the above query is shown in Figure 3-50.

Figure 3-50 Retrieving data using the UNPIVOT clause

3-62					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
 Self-Evaluation Test
Answer the following questions and then compare them to those given at the end of this
chapter:

1.	 Which of the following is not a logical operator?

		 (a) AND					 (b) OR
		 (c) NOT					 (d) IN

2.	 Which of the following clause is used to filter the data from the database?

		 (a) WHERE					 (b) DESC
		 (c) GROUP BY					 (d) ORDER BY

3.	 Which of the following operators is used to combine the results from two or more queries
into a single result?

		 (a) IN	 					 (b) SET
		 (c) LIKE					 (d) All of these

4.	 Which of the following clauses is used to arrange the data retrieved from a table into sorted
order?

		 (a) HAVING					 (b) GROUP BY
		 (c) ORDER BY					 (d) WHERE

5.	 Which of the following is the aggregate function?

		 (a) SUM					 (b) COUNT
		 (c) Both (a) and (b)				 (d) None of these

6.	 The __________ statement is the most popular SQL statement to query a table.

7.	 In Oracle, the __________ clause is used to prevent the selection of duplicate rows in a table.

8.	 The __________ operators are used to compare one expression with another.

9.	 The __________ clause is used to select, delete, or update only those rows in which the
expression evaluates to true.

10.	 The __________ operator is used to compare the character string with the matching pattern.

11.	 The SELECT statement is used to retrieve or view data from one or more tables. (T/F)

12.	 You can define the WHERE clause with only one condition. (T/F)

13.	 The BETWEEN operator is used to retrieve rows that fall within a specified range. (T/F)

Retrieving Data in SQL 3-63

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

14.	 The IN operator is used to retrieve rows based on the multiple value conditions. (T/F)

15.	 The DEFINE command is used to define a substitution variable in SQL *Plus. (T/F)

 Review Questions
Answer the following questions:

1.	 Which of the following operators are used to compare one expression with another
expression?

		 (a) Arithmetic					 (b) Logical
		 (c) Comparison 					 (d) None of these

2. 	 Which of the following is the correct syntax for using the AND operator?

	 (a) SELECT Column1, Column2..........
	 From Table
	 WHERE Condition1 AND Condition2;

	 (b) SELECT Column1, Column2..........
	 FROM Table
	 WHERE Condition1 & Condition2:

	 (c) SELECT Column1, Column2..........
	 FROM Table
	 WHERE Condition1 && Condition2.

	 (d) None of these

3.	 Which of the following keywords belongs to the SET operators?

		 (a) UNION	 				 (b) MINUS
		 (c) Both (a) and (b)				 (d) None of these

4.	 Which of the following operators cannot be applied on the columns of a data type?

		 (a) BLOB	 				 (b) BFILE
		 (c) Both (a) and (b)				 (d) None of these

5.	 Which of the following joins returns a null value in place of the rows which do not match
the join condition from the other table?

		 (a) INNER JOIN 				 (b) OUTER JOIN
		 (c) LEFT OUTER JOIN 			 (d) RIGHT OUTER JOIN

3-64					 Learning Oracle 12c: A PL/SQL Approach
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om
6.	 You can define the __________ clause with multiple conditions.

7.	 The __________ operator joins two or more than two conditions and ensures that the rows
satisfying the conditions are selected.

8.	 The __________ operator joins two or more than two conditions and ensures that the rows
satisfying any one of the conditions are selected.

9.	 The __________ operator joins the result set of two SELECT statements.

10.	 The __________ operator returns distinct rows retrieved by either of the queries.

11.	 Set operators are used to combine the results from two or more queries into a single result.
(T/F)

12.	 The UNION operator returns the difference between two sets. (T/F)

13.	 Set operators are not used with the SELECT statements containing the TABLE collection
expressions. (T/F)

14.	 The GROUP BY clause is used in the SELECT statement to collect data across multiple
records and group the results by one or more columns. (T/F)

15.	 The LEFT OUTER JOIN returns all rows of the first table and only those rows from the
second table that follow the join condition. (T/F)

EXERCISES
Exercise 1

Write a query using the INTERSECT command.

Exercise 2

Write a query to return all distinct rows retrieved by either of the queries using the UNION
operator.

Exercise 3
Write a query to display the names of those employees who earn the lowest salary in a department.

Answers to Self-Evaluation Test
1. d, 2. a, 3. b, 4. c, 5. c, 6. SELECT, 7. DISTINCT, 8. comparison, 9. WHERE, 10. LIKE,
11. T, 12. F, 13. T, 14. T, 15. T

