
Chapter 7
Functions, Classes,

and Objects

 Learning Objectives
After completing this chapter, you will be able to:
• Understand the functions
• Use the file inclusion statements
• Understand the concept of classes
• Use the methods and properties
• Understand the concept of objects
• Use the constructor and destructor
• Understand the concept of inheritance
• Use the parent and final keywords
• Use the instanceof operator
• Understand the concept of interface
• Understand the concept of anonymous class

7-2					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

INTRODUCTION
All the programs that you have studied in the earlier chapters consist of a limited number of
statements. Large programs, however, consist of many statements which make the program
complex and difficult to understand. You can divide a large program into small groups of
statements known as function to remove the program complexity. In case of Object-Oriented
Programming (OOP), the data is treated as the most critical element of the program and the
primary focus is on the data and not on the procedures. Therefore, in OOP, the programs are
implemented using classes, methods, and objects. In this chapter, you will learn about functions,
classes, objects, methods, inheritance, constructors, destructor, and so on.

FUNCTIONS
A function is a group of statements that perform a specific task and can be used multiple times
in a program. A function has a name and it returns a value. It may also have a list of arguments
and it gets executed when a call is made. If a function consists of an argument then a value can
be passed to that argument at the time of function calling.

There are two types of functions in PHP which are as follows:

1.	 User Defined Functions
2.	 In-built Functions

These functions are discussed next.

User Defined Functions
PHP provides you more than a thousand in-built functions which can be directly used in a
program as required. Other than these in-built functions, you can create user defined functions
and name them.

Creating User Defined Functions
The syntax for creating a user defined function is as follows:

function Func_name($arguments){
 	 //statements
}

In the given syntax, function is the keyword used to create or declare function. The Func_name
represents the name of function used as a reference in the program. The Parentheses (open
and close bracket ()) after the function name are required. Here, $arguments represents the
arguments or input parameters of the function which are passed inside the parentheses of the
function. But, these arguments are optional. The function block starts with open curly bracket
({) and ends with a closing curly bracket (}) and the function statements are written inside the
block of function.

For example:

 <?php
	 function cadcim(){

Functions, Classes, and Objects 7-3

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

		 echo “Welcome to CADCIM” ;
			 }
	 cadcim(); //function calling
?>
// output: Welcome to CADCIM

In the given example, function is the keyword used to declare function. cadcim() is the function
name with no input parameters passed inside the parentheses. When the function is called by
its name, it displays the statement written inside the function block in the browser.

You can also pass input parameters to the function if required in the program.

For example:

<?php
	 function bookname($book){
		 echo “$book” ;
			 }
	 bookname(“Introducing PHP/MySQl”);
?>
//output: Introducing PHP/MySQl

In the given example, function is the keyword used to declare function in PHP, bookname is
the function name, and $book is the input parameter passed to the function bookname. When
some value is passed to the function, it will get assigned to the input parameter $book of the
function and output will be displayed using the echo statement. In this case, Introducing PHP/
MySQL is the value passed to the function bookname() so it will get assigned to $book and will
be displayed as output.

Function Name
The function name is used as reference in the program. It can be used multiple times to call the
same function if required in the program.

While naming a function, you must follow certain rules. The rules are as follows:

1.	 Only alphabetic characters, both uppercase and lowercase, digits from 0 to 9, and the
underscore (_) can be used.

2.	 Function name can start with an alphabet or an underscore but not with a digit.
3.	 Function names are case insensitive. For example, case, CASE, and Case, all three will

be treated as name of a single function.

The following function names are invalid in PHP:

9_Count() // Function name cannot start with a digit.
COUNT#() // Function name cannot contain #(hash symbol).

7-4					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The following function names are valid in PHP:

COUNT_9() // Function name can start with alphabetic characters.
_ACCOUNT() // Function name can start with an underscore.
Account() // Function name is case insensitive.

Tip
It is recommended to name the function according to its functionality rather than random
names. It will make your code more clear.

Function Arguments
The function arguments are used to pass information to the function. You can pass one or more
arguments in a single function according to the requirement of the program. The arguments
or input parameters of function are passed inside the parentheses just after the function name.
The function arguments work like a variable inside the function.

For example:

<?php
	 function family($fname, $age, $hobby) {
 	 echo “$fname is $age years old.
”;
		 echo “He loves playing $hobby.
”;
	 }
		 family(“John”, 40, “football”);//function call
?>

In the given example, family($fname, $age, $hobby) is a function created by using the function
keyword. Here, family is the function name and $fname, $age, and $hobby are multiple
arguments passed to the function and are separated by comma. At the time of function call,
some values are passed to the function which gets assigned to the input parameters $fname,
$age, and $hobby of the function.

Note
A function can be called multiple times by passing different values to it. If you call a function
without passing any value then it takes the default value.

Example 1
The following program will illustrate the use of the function by passing multiple arguments to
it. In this program, function is called multiple times and the output is displayed in the browser.

<!Doctype html>								 1
<html>										 2
<head>										 3
<title>Function with multiple arguments</title>			 4
</head> 										 5
<body> 										 6
<?php										 7

Functions, Classes, and Objects 7-5

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

function player($fname=“Smith”, $age=16, $team=“Not eligible”) 8
{											 9
	 if($age<18)									 10
	 {										 11
	 echo “$fname you are $age years old.
”;			 12
 echo “Your age is below 18. You are $team to play
”; 13
	 echo “
”;								 14
	 }										 15
	 elseif($age==18)								 16
	 {										 17
 echo “$fname your age is $age.
”;				 18
	 echo “You will play in team $team.
”;			 19
 echo “
”;								 20
 }										 21
elseif($age==19)								 22
	 {										 23
	 echo “$fname your age is $age.
”;				 24
	 echo “You will play in team $team.
”;			 25
	 echo “
”;								 26
 }										 27
else										 28
 {										 29
	 echo “$fname players above the age 19 will play in team	 30
 $team
”;								 31
	 echo “
”;								 32
	 }										 33
}											 34
player(“John”, 18, “A”);							 35
player(“Justin”, 19, “B”);							 36
player(“All”, 40, “C”);							 37
player();									 38
?>											 39
</body>										 40
</html>										 41

Explanation
Line 8
function player($fname=“Smith”, $age=16, $team=“Not eligible”)
In this line, function is the keyword used to create a function. player is the function name and
($fname=“Smith”, $age=16, $team=“Not eligible”) are multiple arguments separated by
comma, passed to the function inside the parentheses. Here, each argument in the function is
assigned a default value.

Line 35
player(“John”, 18, “A”);
In this line, Player is the function name and John, 18, and A are the values passed to the
function. Here, this line will call the function and the values passed here will get assigned to

7-6					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

the arguments of the function Player, declared in Line 8. Now, this line will display the current
assigned values instead of the default values in the output.

The working of Line 36 and Line 37 is similar to Line 35.

Line 38
player();
In this line, player() is the function name by which function is called. In this function, no value is
passed inside the parentheses. Therefore, it will call the function and display the default values
assigned to the arguments of the function player in Line 8.

The output of Example 1 is displayed in Figure 7-1.

Figure 7-1 The output of Example 1

Function Return Value
You have already learned about return statement in the previous chapter. The return statement
is used to return a function value.

For example:

	 <?php
		 function mul($p, $q) {
 	 $r = $p * $q;
 	 return $r;
		 }
		 echo “5 * 10 = ” . mul(5,10) . “
”;
		 echo “7 * 13 = ” . mul(7,13) . “
”;
	 ?>

In the given example, function is the keyword used to create a function and mul is the
function name. Here, $p and $q are the two arguments passed to the function. In this function,
multiplication operation is performed between $p and $q variables and the resultant value gets
assigned to the $r variable. Next, the return statement will return the resultant value which is
assigned to the $r variable at the time of function call.

Functions, Classes, and Objects 7-7

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Dynamic Function Call
In PHP, it is possible to dynamically call a function by assigning the function name as a string
to the variables. These variables will behave exactly same as the function assigned to them.
Therefore, to call a function dynamically instead of the function name, you can use the variable
name with parentheses.

For example:

	 <?php
 function dynamicFunc() {
 echo “It is a string
”;
 }
 $func_var = “dynamicFunc”;
 $func_var();
 ?>

In this example, dynamicFunc() is the function which consist of an echo statement inside its block.
Here, $func_var is the variable which holds dynamicFunc (function name) as string type value.
Now, $func_var variable will behave exactly same as the dynamicFunc() function. Therefore,
you can use $func_var variable as a $func_var() function to dynamically call the dynamicFunc()
function.

In-built Functions
There are many in-built functions in PHP. These in-built functions are pre-defined and can be
used directly in the program. You have already learned some in-built string functions in the
previous chapters. In this section, you will learn more about the in-built PHP functions which
are discussed next.

date()
The PHP date() function is used to display current date and time. The syntax for the date()
function is as follows:

date(format,timestamp);

In the given syntax, date() is the in-built function name for date. Inside the parentheses of date
function, format represents different formats for date and timestamp is an optional parameter.
The date() function displays the current time, if timestamp is not specified.

For example:

<?php
	 echo “Current Date in Format 1 is” . date(“Y/m/d”) . “
”;
	 echo “Current Date in Format 1 is” . date(“Y.m.d”) . “
”;
	 echo “Current Date in Format 1 is” . date(“Y-m-d”) . “
”;
	 echo “Current day is” . date(“l”) . “
”;
	 echo “Current time is” . date(“h:i:sa”);
?>

7-8					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

In the given example, date() is the function used to display current date. Here, y/m/d, y.m.d, and
y-m-d are the 3 different date formats defined inside the parentheses of date() function, where
y represents the year (in 4 digit), m represents the month (from 01 to 12), d represents the date
(from 01 to 31), and l represents the day of week. The h:i:sa is the time format to display current
time, where h represents the 12 hour format of an hour, i represents minutes, s represents the
seconds and a represents the ante meridiem (am) or post meridiem (pm).

var_dump()
The var_dump() function is used to display the variable related information including the data
type of the value assigned to the variable. The syntax of var_dump() is as follows:

var_dump($var);

In the given syntax, var_dump() is the function used to get the details of a variable and $var
can be any variable whose detail is to be displayed in the browser.

Example 2
The following program will illustrate the use of the var_dump() function. In this program,
different values will be assigned to the variables and the output is displayed in the browser.

<!Doctype html>								 1
<html>										 2
<head>										 3
<title>Var_dump function</title>						 4
</head> 										 5
<body> 										 6
<?php										 7
	 $value1=508;								 8
	 $value2=“Hello”;								 9
	 $value3=698.99;								 10
	 $value4=true; 								 11
	 $value5=“num123”;								 12
	 echo var_dump($value1).“
”;					 13
	 echo var_dump($value2).“
”;					 14
	 echo var_dump($value3).“
”;					 15
	 echo var_dump($value4).“
”;					 16
	 echo var_dump($value5).“
”;					 17
?>											 18
</body>										 19
</html>										 20

Explanation
Line 13
echo var_dump($value1).“
”;
In this line, var_dump() is the function used to display variable related information. Here, the

Functions, Classes, and Objects 7-9

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

var_dump() function will display the data type and value of the $value1 variable. This line will
display the following in the browser:

int(508)

The working of lines 14 to 17 is similar to Line 13.

The output of Example 2 is displayed in Figure 7-2.

Figure 7-2 The output of Example 2

CSPRNG FUNCTIONS
The CSPRNG functions are introduced in PHP 7. Here, CSPRNG stands for Cryptographically
Secure Pseudo-Random Number Generator. It consists of following two functions:

a.	 random_bytes()
b. 	 random_int()

They are used to generate cryptographically secure integers and strings in a cross platform way.
These CSPRNG functions are discussed next.

random_bytes()
The random_bytes() function is used to generate cryptographically secure pseudo-random
bytes in PHP. It means this function is used to convert the information provided by the coder
or user into randomly generated bytes to secure the information or data. The random_bytes()
function is used to generate keys or initialization vectors. The syntax of the random_bytes()
function is as follows:

string random_bytes (int $length)

In the given syntax, random_bytes() is an in-built string type function used to generate random
string. Inside the parentheses of this function, integer type variable $length is passed. This
function will convert the integer value assigned to the $length variable into random string and
return the requested number of the random string.

7-10					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Example 3
The following program will illustrate the use of random_bytes() and bin2hex() functions. In
this program, random string will be generated and converted into hexadecimal form and the
output is displayed in the browser.

<!Doctype html>								 1
<html>										 2
<head>										 3
<title>Random bytes</title>						 4
</head> 										 5
<body> 										 6
<?php										 7
	 $string= random_bytes(11);						 8
	 print(“Random string generated is ”);				 9
	 print ($string);							 10
 print(“
Binary to hex conversion value for this		 11
			 randomly generated string is ”);
	 print(bin2hex($string));						 12
?>											 13
</body>										 14
</html>										 15

Explanation
Line 8
$string= random_bytes(11);
In this line, random_bytes() is the function assigned to the $string variable. Inside the
parentheses of function, 11 is the integer type value. This value will get converted into random
string using the random_bytes() function.

Line 12
print(bin2hex($string));
In this line, print is the statement used to display the output in the browser. Inside the parentheses
of print statement, bin2hex() function is passed. This function is used to convert binary data
into hexadecimal data. Here, $string is the variable passed inside the parentheses of bin2hex()
function. The value of $string variable will convert into hexadecimal form.

The output of Example 3 is displayed in Figure 7-3.

Figure 7-3 The output of Example 3

Functions, Classes, and Objects 7-11

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

random_int()
The random_int() function is used to generate cryptographically secure pseudo-random integers
in PHP. It means this function is used to convert the information provided by the coder or user
into randomly generated integers to secure the information or data. The random_int() function
is used where unbiased results are critical. The syntax of random_int() function is as follows:

int random_int (int $min , int $max)

In the given syntax, random_int() is an in-built int type function used to generate random
integers. Inside the parentheses of this function, integer type variables $min and $max are
passed. Here, $min variable will hold minimum value and $max variable will hold maximum
value. This function will return the random integer value in between the $min and $max values.

Example 4
The following program will illustrate the use of random_int() function. In this program, random
integers will be generated and the output is displayed in the browser.

<!Doctype html>								 1
<html>										 2
<head>										 3
<title>Random integer</title>						 4
</head> 										 5
<body> 										 6
<?php										 7
	 $min_value= -1000;							 8
	 $max_value= 100;							 9
	 print(“Random generated first integer is ”);	 	 	 10
	 print(random_int(1000 , 3000));					 11
	 print(“
Random generated second integer is ”);		 12
	 print(random_int($min_value , $max_value));			 13
?>											 14
</body>										 15
</html>										 16

Explanation
Line 11
print (random_int(1000 , 3000));
In this line, random_int() is the function. Inside the parentheses of function, 1000 and 3000
are the minimum and maximum integer type values passed, respectively. The random_int()
function will generate the random integer value whose range will be between 1000 to 3000.

The working of Line 13 is similar to Line 11.

The output of Example 4 is displayed in Figure 7-4.

7-12					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om Figure 7-4 The output of Example 4

FILE INCLUSION STATEMENTS
File inclusion statements are used to include any functions, HTML code, or PHP code saved in
another file in the current PHP file. There are two types of file inclusion statements as follows:

a.	 include statement
b.	 require statement	

The include and require statements are discussed next.

The include Statement
The include statement is used when the current PHP file requires the content of another PHP
file in it. The advantage of the include statement is that it loads the total content of a given
file in the current file in just one line of code. There is no need to copy paste the entire code in
the current file. The disadvantage of this statement is that if it does not find the included file
which is essential for the specified task, it will still execute the program. The syntax of include
statement is as follows:

include ‘file_name.extension’;

In the given syntax, include is the keyword used to include a required file. The file_name.extension
is the required file which is to be included in the current file.

For example:

<?php
	 	 include ‘example.php’;
		 // PHP code
?>

In the given example, include is the keyword used to include example.php file in the current
program.

The require Statement
The working of the require statement is same as of the include statement with the only difference
that if the required file is missing, it will not execute the program. So if it is important to include

Functions, Classes, and Objects 7-13

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

a file in the program, it is better to use the require statement in place of the include statement.
The syntax of the require statement is as follows:

require ‘file_name.extension’;

In the given syntax, require is the keyword used to include a required file. The file_name.extension
is the required file which is to be included in the current file.

Example 5
The following program will illustrate the use of the include and require statements. In this
program, two files are included and the output is displayed in the browser.

The header.php file for inclusion.

<?php										 1
	 echo “<p>Hello User</p>”					 2
?>											 3

The footer.php file for inclusion.

<?php										 1
	 echo “<p>Copyright ©”.date(“Y”).“ CADCIM</p>”		 2
?>											 3

The ch7-example5.php program file will include the two files: header.php and footer.php.

<!Doctype html>								 1
<html>										 2
<head>										 3
<title>File inclusion</title>						 4
</head> 										 5
<body> 										 6
<?php										 7
	 include ‘header.php’;		 	 	 	 	 	 8
		 echo “This is the PHP code”;					 9
	 	 echo “
 It includes 2 external files as follows:”;	 10
		 echo “
1. header.php”;					 11
		 echo “
2. footer.php”;					 12
	 require ‘footer.php’;		 	 	 	 	 	 13
?>											 14
</body>										 15
</html>										 16

Explanation (Footer.php)
Line 2
echo “<p>Copyright ©”.date(“Y”). “ Cadcim</p>”;
In this line, © is the HTML keyword to draw the copyright symbol in the browser, date()

7-14					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

is the function used to display the current date, inside the parentheses of function, “Y” displays
the current year.

Explanation (ch7-example5.php)
Line 8
include ‘header.php’;
In this line, include is the keyword used to load all the content of the given file in the current
file. Here, header.php file is the required file which is included.

Line 13
require ‘footer.php’;
In this line, require is the keyword used to load all the content of required file in the current
file. Here, footer.php file is the required file which is included.

The output of Example 5 is displayed in Figure 7-5.

Figure 7-5 The output of Example 5

CLASSES
A class is an user-defined data type and is a collection of data and methods (functions). It acts as
a blueprint or prototype in the creation of objects. These objects are known as the instances of
a class having specific data type. The data in a class specifies the nature of a class, whereas the
methods(functions) are used to operate on the data inside a class. Both the data and methods
are known as the members of a class. The motive behind using a class is to encapsulate the
data and methods into a single unit so that the data members can be accessed only through a
well-defined interface. This process is known as data hiding.

Declaring a Class
A class is declared by using the class keyword with the class name. The class name should be
a valid identifier. The class definition consists of data members and methods. The syntax for
declaring a class is as follows:

class class_name
{
	 // property(variable) declaration
		 ----------;
		 ----------;

Functions, Classes, and Objects 7-15

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

	 //method(function) declaration;
	 {
		 //body of method
		 ----------;
		 ----------;
	 }
}

In the given syntax, the declaration of the class begins with the class keyword followed by a
class_name which is an identifier given by the programmer to specify the name of the class.
The body of the class is enclosed within the curly braces {}.

The functions used in a class are known as methods and the variables used in a class are known
as properties.

Property and Method Scope
The property and method scope specifies the visibility of the properties or the methods of a
class. There are three keywords used to specify the visibility of method and function which are:

a.	 public
b.	 protected
c.	 private

You can use any of the three keywords to specify the visibility of the properties and methods.
These keywords are discussed next.

public
The public methods or properties of a class can be accessed by the members of the same class
and by the members of the other classes. So it means the method or the property declared as
public can be accessed from anywhere in the program.

 The syntax for declaring public property is as follows:

public $variable = ‘string’;

In the given syntax, the $variable is the property which is declared as public by prefixing it with
the public keyword. This specifies that the $variable property can be accessed from anywhere
in the program.

The syntax for declaring public method is as follows:

public function MyFunc() { }

In the given syntax, the MyFunc() is the method which is declared as public by prefixing it with
the public keyword. This specifies that the MyFunc() method can be accessed from anywhere
in the program.

7-16					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

protected
The protected methods or the properties of a class can be accessed by members of the same
class and by the inheriting classes.

The syntax for declaring the protected property is as follows:

protected $variable = ‘string’;

In the given syntax, $variable is the property which is declared as protected by prefixing it with
the protected keyword. This specifies that the $variable property can be accessed from the same
class or by the inheriting classes in the program.

The syntax for declaring the protected method is as follows:

protected function MyFunc() { }

In the given syntax, MyFunc() is the method which is declared as protected by prefixing it with
the protected keyword. This specifies that the MyFunc() method can be accessed from the same
class or by the inheriting classes in the program.

Note
You will learn about inheritance later in this chapter.

private
The private methods or the properties of a class can only be accessed by the members of the
same class.

The syntax for declaring the private property is as follows:

private $variable = ‘string’;

In the given syntax, $variable is the property which is declared as private by prefixing it with
private keyword. This specifies that the $variable property can be accessed only by the members
of the same class.

The syntax for declaring public method is as follows:

public function MyFunc() { }

In the given syntax, MyFunc() is the method which is declared as private by prefixing it with
the private keyword. This specifies that the MyFunc() method can be accessed only by the
members of the same class.

OBJECTS
In object-oriented programming, a problem is divided into certain basic entities called objects.
In this type of programming, all communication is carried out between the objects. When a

Functions, Classes, and Objects 7-17

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

program is executed, the objects interact with each other by sending messages. The objects
contain the data and the functions that can be used to manipulate data.

An object is defined as an instance or a physical instantiation of a class. It is also known as a
living entity within a program. When an object is created within a class, it maintains its own
copy of instance variables that are defined inside the class. A class provides certain attributes
and each object can have different values for those attributes. Therefore, each object of a class
is uniquely identified.

Creating an Object
After the declaration of a class, you can create the objects of that class by using the class name
with the new keyword. The syntax of creating an object is as follows:

$obj = new class_name;

In the given syntax, class_name represents the name of the class. The object is created by
assigning the class_name prefixed with the new keyword to the $obj variable. After the assignment
of new class_name, the variable $obj acts as the object of the specified class. So here, $obj
represents an object of class_name class.

Accessing Members Using Objects
The objects are used to access the members of a class using arrow operator (->). The syntax for
accessing a member using objects is as follows:

$obj->member;

In the given syntax, $obj is representing an object. The arrow operator (->) is used with the
object to access the member. Here, member can be a property or a method of the class.

The syntax to access the property of the class is as follows:

$obj->prop; //line 1
$obj->prop = “value”; //line 2

There are two syntax to access the property of a class. In the line 1, $obj represents the object
and prop represents the property name without $ (dollar) sign. This syntax is used if a value
is already assigned to the property. In the other case, the second syntax is used which is line 2
where value is assigned while accessing the property.

Example 6
The following program will illustrate the use of class and object. In this program, the values of
the properties are accessed using the objects of a class and the output is displayed in the browser.

<!Doctype html>								 1
<html>										 2
<head>										 3

7-18					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

<title>Accessing property</title>					 4
</head> 										 5
<body> 										 6
<?php										 7
	 class prop									 8
	 {										 9
 	 public $property = “The value of \$property is accessed	 10
				 by using \$var object”;
 	 public $property2;							 11
	 }										 12
	 $var = new prop;								 13
	 $var2 = new prop;								 14
	 echo $var->property;							 15
	 echo “
”;								 16
	 echo $var2->property2 = “The value of \$property2 is 		 17
					 by accessed using \$var2 object”;
?>											 18
</body>										 19
</html>										 20

Explanation
Line 8
class prop
In this line, class is the keyword and prop is the name of the class.

Line 9
{
This line indicates the start of the body of the prop class.

Line 10
public $property = “The value of \$property is accessed by using \$var object”;
In this line, $property is the property which is declared as public by prefixing it with public
keyword. This specifies that the $property property can be accessed from any part of the program.
The $property property holds a string type value.

Line 11
public $property2;
In this line, $property2 is the property which is declared as public by prefixing it with public
keyword. This specifies that the $property2 property can be accessed from any part of the
program. Here, no value is assigned to this property.

Line 12
}
This line indicates the end of the body of the prop class.

Line 13 and Line 14
$var = new prop;

Functions, Classes, and Objects 7-19

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

$var2 = new prop;
In these lines, the $var and $var2 are the objects of the prop class created by using the new
keyword.

Line 15
echo $var->property;
In this line, property is the property name without the $ sign. This property is accessed by using
the $var object with the arrow operator (->).

This line will display the following in the browser:

The value of $property is accessed by using $var object

Line 17
echo $var2->property2 = “The value of \$property2 is accessed by using \$var2 object”;
In this line, property2 is the property name without the $ sign. This property is accessed by using
the $var2 object with the arrow operator (->). Here, the value is assigned to the $property2
property at the time of accessing the property.

This line will display the following in the browser:

The value of $property2 is accessed by using $var2 object

The output of Example 6 is displayed in Figure 7-6.

Figure 7-6 The output of Example 6

The syntax to access the method of the class is as follows:

$obj->method();

In the given syntax, $obj represents the object and method() represents the method. The arrow
operator (->) is used with the object to access the method.

For example:

<?php
	 class world
		 {
 	 function user()
 		 {
 		 echo “Hello User!”;
 		 }

7-20					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

		 }
	 $var = new world;
	 $var->user();
?>

In the given example, $var is the object and user() is the method. The $var object is used with
the arrow operator (->) to access the user() method.

OBJECT CLONING
Every object is uniquely identified in PHP. But if we create a copy of an object then its properties
also get completely copied by its reference. For example, if object1 is copied to object2 then
they get linked. Whenever there will be change in the value of any linked object that is either
object1 or object2, the same result will be displayed in the other. Therefore through copying
object the same output can get generated for multiple objects. This can be avoided by cloning
an object instead of copying an object.

Cloning an object creates copy of an object without referencing the main object. This means
that any change in the value of one object will not affect the value of another object. The clone
of an object is created by using the clone keyword.

The syntax of an object cloning is as follows:

$CopyOfObject = clone $object;

In the given syntax, $object is the main object which will get copied to $CopyOfObject by using
clone keyword. Here, $CopyOfObject represents another object.

Example 7
The following program will illustrate object cloning in PHP. In this program, an object is copied
directly and by using the clone keyword and the output is displayed in the browser.

<!Doctype html>								 1
<html>										 2
<head>										 3
<title>Object cloning</title>						 4
</head> 										 5
<body> 										 6
<?php										 7
	 class object_cloning							 8
	 { 										 9
 	 public $gesture;							 10
	 }										 11
	 $var = new object_cloning;						 12
	 $var->gesture = “Hello main object”;				 13
	 $var2 = $var; //copy of object					 14
	 $var2->gesture = “Hello copy object”;				 15

Functions, Classes, and Objects 7-21

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

	 $var3 = clone $var; //clone of object				 16
	 $var3->gesture = “Hello clone object”;				 17
	 echo “orignal value of main-object is Hello main 		 18
		 object.
”;
	 echo “orignal value of copy-object is Hello copy 		 19
		 object.
”;
	 echo “orignal value of clone-object is Hello clone 	 20
		 object.
”;
	 echo “ Values:
”; 						 21
	 echo “main-object = ” .$var->gesture.”
”;		 22
	 echo “copy-object = ” .$var2->gesture.”
”;		 23
	 echo “clone-object = ” .$var3->gesture.”
”;		 24
?>											 25
</body>										 26
</html>										 27

Explanation
Line 11
public $gesture;
In this line, $gesture is the property which is declared as public by prefixing it with public
keyword. This specifies that the $gesture property can be accessed from any part of the program.
Here, no value is assigned to this property.

Line 12
$var = new object_cloning;
In this line, $var is an object of class object_cloning created by using the new keyword.

Line 13
$var->gesture = “Hello main object”;
In this line, gesture is the property name without the $ sign. This property is accessed by using
the $var object with the arrow operator (->). Here, the value is assigned to the $gesture property
at the time of accessing the property.

Line 14
$var2 = $var;
In this line, $var2 is an object which will copy $var object by its reference.

Line 15
$var2->gesture = “Hello copy object”;
In this line, gesture is the property name without the $ sign. This property is accessed by using
the $var2 object with the arrow operator (->). Here, the value is assigned to the $gesture property
at the time of accessing the property.

Line 16
$var3 = clone $var;
In this line, $var3 is an object which will copy $var object by using clone keyword.

7-22					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 17
$var3->gesture = “Hello clone object”;
In this line, gesture is the property name without the $ sign. This property is accessed by using
the $var3 object with the arrow operator (->). Here, the value is assigned to the $gesture property
at the time of accessing the property.

The output of Example 7 is displayed in Figure 7-7.

Figure 7-7 The output of Example 7

CONSTRUCTOR
A constructor is a special method (function) used to initialize the objects of a class. You can pass
multiple parameters in the constructor while creating a new object. The __construct() method
is the in-built constructor method of a class. The syntax of constructor is as follows:

class Class_name {
 function __construct() {
					 //body of constructor method
 			 }
 }

In the given syntax, Class_name represents the name of class, function is the keyword used to
create method, and __construct() is the constructor method of the class_name class.

Note
In the past, the name of constructor was the same as the name of class. This old format is deprecated
in PHP 7. Now, the standard name of constructor is __construct().

DESTRUCTOR
A destructor is also a special method used to destroy the objects that have been initialized by
a constructor and are no longer required. The __destruct() method is the in-built destructor
method of a class. The syntax of destructor is as follows:

class Class_name {
	 function __construct()
			 {
				 //body of constructor method

Functions, Classes, and Objects 7-23

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

 		 }
	 function __destruct()
			 {
				 //body of destruct method
 		 }
 }

In the given syntax, Class_name represents the name of class and function is the keyword
used to create method. Here, __construct() is the constructor method and __destruct() is the
destructor method of the class_name class.

Example 8
The following program will illustrate the use of constructor and destructor. The program will
create and destroy two objects of a class and the output is displayed in the browser.

<!Doctype html>								 1
<html>										 2
<head>										 3
<title>Constructor and Destructor</title>				 4
</head> 										 5
<body> 										 6
<?php										 7
	 class objects								 8
		 {									 9
 		 public $val = “Object”;					 10
 		 public function __construct($val)			 11
 		 {								 12
 			 echo “Object is created
”;			 13
 			 $this->val = $val;				 14
 		 }								 15
 			 public function __destruct()			 16
 		 {								 17
 			 echo “Object is destroyed
”;		 18
 		 }								 19
		 }									 20
	 $new_val = new objects(“Object”);					 21
	 echo $new_val->val. “ is alive
”;				 22
?>											 23
</body>										 24
</html>										 25

Explanation
Line 11
public $val = “Object”;
In this line, Object is a string type value assigned to the $val property (variable) and the property
is declared as public by using the public keyword.

7-24					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 12
public function __construct($val)
In this line, function is the keyword used to create method and __construct($val) is the
parameterized constructor method of the objects class. Here, $val is the parameter passed
inside the parentheses of constructor __construct(). It will initialize the object of objects class.

Line 14
$this->val = $val;
In this line, $this is the pre-defined variable used to access the current object. The val is the
property name without the $ sign and $val property is assigned to it. After the execution of this
line, the control will be passed to Line 21 and Line 22.

Line 16
public function __destruct()
In this line, function is the keyword used to create method and __destruct() is the destructor
method of the objects class which will destroy the object. It will be executed in the end when
object initialized by a constructor is no longer required.

Line 21
$new_val = new objects(“Object”);
In this line, the $new_val is an object of class objects created by using the new keyword. Here,
Object is the value passed to the object created.

Line 22
echo $new_val->val. “ is alive
” ;
In this line, val is the property name without the $ sign. The $val property is accessed by using
the $new_val object with the arrow operator (->).

This line will display the following in the browser:

Object is alive

The output of Example 8 is displayed in Figure 7-8.

Figure 7-8 The output of Example 8

CLASS CONSTANT
The working of class constant is same as the constant which you learned in the previous chapter
with the only difference that the constant in the class is declared using the const keyword instead
of define() function. The scope of class constant is limited to the class in which it is declared.

Functions, Classes, and Objects 7-25

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The syntax of class constant is as follows:

class Class_name
{
 const NAME = ‘value’;
}

In the given syntax, const is the keyword used to define constant inside the class, NAME
represents the constant name, and value is the value of the constant. The value of constant can
be an integer, boolean, string, float, NULL, or an array type.

The name of the class followed by double colon(::) also known as scope resolution operator along
with the name of the class constant is used to return the class constant value outside the class.

For example:

<?php
	 class Const_class
		 {
 	 	 const HELLO = ‘Hello User’;
		 }
	 echo Const_class::HELLO;
?>

In the given example, Const_class is the class name. Inside the class, a constant is defined by
using the const keyword along with constant name HELLO. The value assigned to constant is
Hello User. The echo statement is used to display the constant value where Const_class::HELLO
is used to return the value of constant.

To return the value of constant inside the class, the keyword self is used followed by scope
resolution(::) operator and class constant name. For example, self::const_name; where const_
name is the class constant name.

STATIC METHODS AND PROPERTIES
Declaring a method or property of a class as static makes them accessible directly without creating
or instantiating an object of that class. You can create static methods and properties by using
the static keyword. By default, the visibility of static methods and properties is public. The static
methods and properties are linked to the class in which it is declared. The value of static property
can be changed multiple times in a program. But in a constant property, the value remains fixed
throughout the program if once defined for a particular property.

The syntax of static property is as follows:

public static $static_property;	

In the given syntax, public is the keyword which is used to define the visibility of the property
to be public. $static_property is the property which is declared as static property by using the
static keyword.

7-26					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The name of the class followed by the scope resolution operator(::) along with the name of the
property is used to call the static property outside the class.

For example:

class prop
{
	 public static $var = 5; //Static variable or property
}
echo prop::$var;

In the given example, public is the keyword used to define the visibility of the property to be
public. $var is the property which is declared as static property by using the static keyword inside
the class prop holding integer type value 5. The prop::$var is used to call the static property where
prop is the class name followed by scope resolution operator(::) along with $var static property.

To call the value of static property inside the class, the keyword self is used followed by scope
resolution operator(::) and static property name. For example, self::$var; where $var is the
static property.

The syntax of static method is as follows:

public static function static_method()
		 {
 		 // body of method or function
		 }

In the given syntax, public is the keyword used to define the visibility of the method to be public.
The static_method() is the method which is declared as static method by using the static keyword.

The name of the class followed by the scope resolution operator(::) along with the name of the
method is used to call the static method outside the class.

For example:

<?php
class func
{
	 static function test($var1 , $var2)
	 {
		 echo “$var1 $var2”;
	 }
}
func::test(“Hello” , “User”);
?>

Functions, Classes, and Objects 7-27

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

In the given example, function is the keyword used to create method in the class. The
test($var1, $var2) is the parameterized method which is declared as static method by using
the static keyword. Here, $var1 and $var2 are the two parameters passed inside the static
method. By default, the visibility of the method is public as it is not declared in the example.
The func::test(“Hello” , “User”); is used to call the static method where func is the class name
followed by scope resolution operator(::) along with static method test(). Here, the two values
Hello and User are passed to the method.

To call the value of static method inside the class, the keyword self is used followed by scope
resolution operator(::) and static method name. For example, self::test(); where test() is the
static method.

Example 9
The following program will define class constant, static methods, and static properties. It will
also call them inside as well as outside the class and the output is displayed in the browser.

<!Doctype html>								 1
<html>										 2
<head>										 3
<title>Class constant and static</title>				 4
</head> 										 5
<body> 										 6
<?php										 7
	 class const_static							 8
	 {										 9
			 const FIRST_CONST = “Hello User”;			 10
			 const SECOND_CONST = 10;				 11
			 static $var = 5;						 12
			 static $var2 = “The output is displayed”;		 13
 		 public static function test($var1 , $var2)		 14
 		 {									 15
	 		 echo “$var1 $var2
”;				 16
		 }									 17
		 static function test2()						 18
		 {									 19
			 echo “Welcome to CADCIM Technologies
”;	 20
		 }									 21
		 function showConstant()						 22
		 {									 23
 		 echo self::FIRST_CONST . “
”;			 24
			 self::test2();						 25
			 echo self::$var2 . “
”;				 26
		 }									 27
	 }										 28
	 $class = new const_static;						 29
	 $class->showConstant();							 30
	 const_static::test(“The integer” , “values are:”);		 31

7-28					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

	 echo const_static::$var . “
”; // returns 5		 32
	 echo const_static::SECOND_CONST. “
”; // returns 10	 33
	 const_static::$var = 20; // now equals 20			 34
	 echo const_static::$var. “
”;					 35
?>											 36
</body>										 37
</html>										 38

Explanation
Line 10
const FIRST_CONST = “Hello User”;
In this line, const is the keyword used to declare the constant inside the class, FIRST_CONST
is the class constant name which holds the string type value Hello User. This value will remain
constant throughout the program.

Line 11
const SECOND_CONST = 10;
In this line, const is the keyword used to declare the constant inside the class, SECOND_CONST
is the class constant name which holds the integer type value 10. This value will remain constant
throughout the program.

Line 12
static $var = 5;
In this line, $var is the method declared as static method using the static keyword. It holds
integer type value 5 which can be changed if required.

Line 13
static $var2 = “The output is displayed”;
In this line, $var2 is the method declared as static method using the static keyword. It holds
string type value The output is displayed which can be changed if required.

Line 14
public static function test($var1 , $var2)
In this line, function is the keyword used to create method in the class. The test($var1, $var2) is
the parameterized method which is declared as static method by using the static keyword. Here,
$var1 and $var2 are the two parameters passed inside the static method. Here, public is the
keyword used to define the visibility of the method to be public.

Line 18
static function test2()
In this line, function is the keyword used to create method in the class. test2() is the method
which is declared as static method by using the static keyword. Here, by default the visibility of
the method is public as it is not declared.

Line 22
function showConstant()
In this line, ShowConstant() is the method of const_static class which is created by using
function keyword.

Functions, Classes, and Objects 7-29

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 24
echo self::FIRST_CONST . “
”;
In this line, echo statement is used to display the value of class constant. self::FIRST_CONST
is used to call the value of class constant defined in Line 10. Here, self is the keyword used to
call the class constant inside the class followed by the scope resolution operator (::) and class
constant name FIRST_CONST.

This line will display the following in the browser:

Hello User

Line 25
self::test2();
In this line, self::test2(); is used to call the static method declared in Line 18. Here, self is the
keyword used to call the static method inside the class followed by the scope resolution operator
(::) and static method name test2().

Line 26
echo self::$var2 . “
”;
In this line, self::$var2 is used to display the value of static $var2 property that is defined in
Line 13 inside the const_static class. Here, self is the keyword used to call the static property
inside the class followed by the scope resolution operator (::) and static $var2 property name.

This line will display the following in the browser:

The output is displayed

Line 29
$class = new const_static;
In this line, $class is the object of class const_static created by using the new keyword.

Line 30
$class->showConstant();
In this line, $class is the object and showConstant() is the method. The $class object is used
with the arrow operator (->) to access the showConstant() method declared in Line 22.

Line 31
const_static::test(“The integer” , “values are:”);
In this line, const_static is the class name followed by :: operator and test() method. It will call
the static method test() of class const_static declared in Line 14. Here, two string type values
are passed to the test() method.

Line 32
echo const_static::$var . “
”;
In this line, echo statement is used to display the value of static property declared inside the class
const_static. The const_static::$var is used to call the value of static property defined in Line 13. Here,
const_static is the class name used to call the static property outside the class followed by the
scope resolution operator (::) and static property name $var2.

7-30					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

This line will display the following in the browser:

5

Line 33
echo const_static::SECOND_CONST . “
”;
In this line, echo statement is used to display the value of class constant. The const_static::SECOND_
CONST is used to call the value of class constant defined in Line 11. Here, const_static is the
keyword used to call the class constant outside the class followed by the scope resolution operator
(::) and class constant name SECOND_CONST.

This line will display the following in the browser:

10

The output of Example 9 is displayed in Figure 7-9.

Figure 7-9 The output of Example 9

INHERITANCE
Different kind of objects often have certain amount of properties in common. Inheritance is a
key feature of object oriented programming. It gives you the benefit of reusing methods and
properties of a class and therefore, it reduces the lines of code in a PHP program. Inheritance
is the process by which one object can acquire the properties of another object.

Technically, inheritance is a technique of deriving new class from an existing class by reusing
the features (properties and methods) of the existing class in that new class. In addition to the
inherited features, new class can also have some additional new features.

The class that inherits the property and methods of another class is known as derived class. The
derived class is also known as sub class or child class and the class from which the derive class
is derived is known as super class or base class or parent class.

The extends keyword is used to perform inheritance in PHP. In inheritance, the child class can
only inherit all the public and protected features (methods and properties) of the parent class.
But, it cannot inherit the private methods and properties of the parent class.

Functions, Classes, and Objects 7-31

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The syntax of inheritance in PHP is as follows:

class Parent {
 // The body of Parent class
}

class Child extends Parent {
 // The body of derived class
}

In the given syntax, Parent represents the name of the base class, Child represents the name of
the derived class. Here, the class Child is derived from base class Parent by using the extends
keyword. The class Child will inherit all the non-private methods and the properties of base
class Parent.

Example 10
The following program will illustrate the use of inheritance. The program will calculate the area
of a rectangle and the output is displayed in the browser.

<!Doctype html>								 1
<html>										 2
<head>										 3
<title>Inheritance</title>							 4
</head> 										 5
<body> 										 6
<?php										 7
	 class Rectangle {							 8
 	 	 public $length;							 9
 		 public $width;							 10
 		 public function __construct($length, $width) 		 11
		 {									 12
 			 $this->length = $length;				 13
 			 $this->width = $width;					 14
 		 }									 15
	 }										 16
	 class rect_area extends Rectangle {					 17
 		 public function GetArea() 					 18
		 {									 19
 			 return $this->length * $this->width;		 20
 		 }									 21
 	 } 										 22
	 $res = new rect_area(10, 5);						 23
echo ‘The length of rectangle is ’.$res->length.‘
’;	24
echo ‘The width of rectangle is ’.$res->width.‘
’;	 25
echo ‘Area of rectangle is ’.$res->GetArea().‘
’;	 26
?>											 27
</body>										 28
</html>										 29

7-32					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Explanation
Line 11
public function __construct($length, $width)
In this line, __construct($val) is the parameterized constructor method of the class Rectangle.
Here, $length and $width are the parameters passed inside the parentheses of constructor
__construct(). It will initialize the object of class Rectangle.

Line 13 and Line 14
$this->length = $length;
$this->width = $width;
In these lines, $this is the pre-defined variable used to access the current object. The length and
width are the name of the properties without the $ sign and in this case, $length and $width
properties are assigned to these objects, respectively.

Line 17
class rect_area extends Rectangle {
In this line, rect_area is the derived class name which is derived from the Rectangle parent
class by using the extends keyword. Here, rect_area class will inherit all the public methods and
properties of Rectangle class.

Lines 18 to 21
public function GetArea()
{
 	 return $this->length * $this->width;
}
These lines contain the definition of the method GetArea() of class rect_area. In the body of
the method, the public properties $length and $width of the base class Rectangle is accessed
directly through $this keyword. The multiplication operation is performed between both the
properties. After multiplication, the resultant value is returned with the help of return keyword.

Line 23
$res = new rect_area(10, 5);
In this line, $res is the instance of class rect_area. The class rect_area can access the methods and
properties of class Rectangle. So the two integer values 10 and 5 passed inside the parentheses
of class rect_area are assigned to $length and $width properties of class Rectangle at the time
of instantiation.

The output of Example 10 is displayed in Figure 7-10.

Figure 7-10 The output of Example 10

Functions, Classes, and Objects 7-33

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The parent Keyword
To call the value of static method of parent class inside the child class, the keyword parent is used
followed by the scope resolution operator(::) and static method name. For example, parent::test();
where test() is the static method of parent class. The working of parent keyword is exactly same
as self keyword with the only difference that it call the methods and properties of base class.

The parent keyword can also be used to differentiate between constructors of parent and child
class. To call the constructor of parent class, the parent keyword can be used in a similar way
as discussed before. For example, parent::__construct(); where __construct is the constructor
of parent class.

If a parent class and derived class both have the methods with same name then that method gets
overridden. In such cases, to call the method of parent class, parent keyword is used which is
followed by the scope resolution operator(::) and the name of the parent class method. Whereas
self keyword is used to call the method of the existing class.

Example 11
The following program will illustrate the use of inheritance with parent keyword. The program
will prevent overriding of method and constructor with the help of parent keyword and the
output is displayed in the browser.

<!Doctype html>								 1
<html>										 2
<head>										 3
<title>parent keyword</title>						 4
</head> 										 5
<body> 										 6
<?php										 7
class A {									 8
function __construct()							 9
 {											 10
 print “I am output of parent class constructor.
”;	11
 }											 12
function Samefunc()								 13
 {											 14
	 echo “I am output of method Samefunc()			 15
	 of parent class A.
”;					
 }											 16
}											 17
class B extends A {								 18
function __construct()							 19
 {											 20
	 parent::__construct();							 21
 print “I am output of child class constructor.
”;	22
 }											 23
function Samefunc()								 24
{											 25

7-34					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

 echo “I am output of method Samefunc()			 26
 of child class B.
”;						
 parent::Samefunc();							 27
 }											 28
}											 29
$b = new B;									 30
$b->Samefunc();								 31
?>											 32
</body>										 33
</html>										 34

Explanation
Line 18
class B extends A {
In this line, B is the derived class name which is derived from the A parent class by using the
extends keyword. Here, class B will inherit all the public methods and properties of class A.

Lines 19 to 23
function __construct()
 {
	 parent::__construct();
	 print “ I am output of child class constructor.
”;
 }
These lines define the constructor __construct() of class B. In the body of constructor, the
parent::__construct(); is calling the constructor of parent class A declared in Line 9 by using
the keyword parent followed by :: operator and constructor name __construct(). Here, the use
of parent keyword is preventing the overriding of constructors. So, this function will execute
both the print statements of class A and class B constructors.

Lines 24 to 28
function Samefunc()
 {
 echo “I am output of method Samefunc() of child class B.
”;
 parent::Samefunc();
 }
These lines define the method Samefunc() of class B. In the body of the method, the
parent::Samefunc(); is calling the method of parent class A declared in Line 13 by using the
keyword parent followed by :: operator and method name Samefunc(). Here, the use of parent
keyword is preventing the overriding of methods. So this function will execute both the echo
statement of class A and class B method Samefunc() when the object of class B will be called
in Line 31.

Line 30
$b = new B;
In this line, the $b is an object of class B created by using the new keyword.

Functions, Classes, and Objects 7-35

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 31
$b->Samefunc();
In this line, object $b is calling the Samefunc() method of B class which in turn will call the
Samefunc() method of A class because B class has inherited all the methods of A class.

The output of Example 11 is displayed in Figure 7-11.

Figure 7-11 The output of Example 11

The final Keyword
The final keyword can be prefixed with the method of base class to prevent overriding of the
method in derived class. It is also known as final method. The syntax of final method is as follows:

class Base_cl
{
 	final function unique()
	 {
	 	 //Body of final method
	 }
}

In the given syntax, unique() represents the method of base class Base_cl. The final keyword
is used to prevent the overriding of method unique().

After using the final keyword with the method declared in the base class if the method in derived
class is declared with the same name, it will throw an error.

You can also declare a base class as final class to prevent overriding of the methods declared in
the base class by prefixing the class with final keyword. In this case, there is no need to separately
specify the method of base class to be the final method.

The syntax of final class is as follows:

final class Base_cl
{
 	 function unique()
	 {
		 //Body of method
	 }
	 function unique2()

7-36					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

	 {
		 //Body of method.
	 }
}

In the given syntax, unique() and unique2() represent the methods of base class Base_cl. The final
keyword is used to prevent the overriding of methods unique() and unique2() of class Base_cl.

After using the final keyword with the base class, if the method in the derived class is declared
with the name same as one of the methods in the base class then it will throw an error.

Example 12
The following program will illustrate the use of inheritance with the final keyword. The program
will prevent overriding of method with the help of final keyword and the output is displayed
in the browser.

<!Doctype html>								 1
<html>										 2
<head>										 3
<title>final keyword</title>	 	 	 	 	 	 4
</head> 										 5
<body> 										 6
<?php										 7
	 class A {									 8
function __construct()							 9
 {											 10
 print “I am output of parent class constructor.
”;	11
 }											 12
final function Samefunc()	 	 	 	 	 	 	 13
 {											 14
	 echo “I am output of method Samefunc()			 15
	 of parent class A.
”;					
 }											 16
}											 17
class B extends A {								 18
function __construct()							 19
 {											 20
	 parent::__construct();							 21
 print “I am output of child class constructor.
”;	22
 }											 23
function Samefunc()								 24
{											 25
 echo “I am output of method Samefunc()			 26
 of child class B.
”;						
 parent::Samefunc();							 27
 }											 28
}											 29

Functions, Classes, and Objects 7-37

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

$b = new B;									 30
$b->Samefunc();								 31
?>											 32
</body>										 33
</html>										 34

Explanation
The working of this program is the same as the previous programming example (Example 11)
except that in Line 13 the final keyword is used with the method samefunc() of parent class A.
So this method cannot override in child class B. This example will output error displaying the
following message in the browser:

Fatal error: Cannot override final method A::Samefunc() in C:\xampp\htdocs\PHPbookexample\
ch7-example12.php on line 33

The output of Example 12 is displayed in Figure 7-12.

Figure 7-12 The output of Example 12

The instanceof Operator
Before using any object, the instanceof operator can be used to check whether an object is an
instance of the specified class or subclass. If the object is of the specified class, then the instanceof
operator evaluates to true otherwise the result is false.

The syntax for the instanceof operator is as follows:

$object_name instanceof class_name

In the given syntax, $object_name represents the object name. The instanceof is the operator
and the class_name is the name of class whose instance is to be checked.

Example 13
The following program will check whether the object is an instance of the class by using the
instanceof operator and the output is displayed in the browser.

<!Doctype html>								 1
<html>										 2
<head>										 3
<title>instanceof operator</title>					 4
</head> 										 5
<body> 										 6
<?php										 7

7-38					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

	 	 class firstClass	 	 	 	 	 	 	 8
		 {									 9
	 	 	 //Body of class firstClass	 	 	 	 10
		 }									 11
	 	 class secondClass extends firstClass		 	 	 12
		 {									 13
			 //Body of class secondClass				 14
		 }									 15
	 $a = new secondClass;							 16
	 var_dump($a instanceof secondClass);				 17
	 var_dump($a instanceof firstClass);	 	 	 	 	 18
	 var_dump(!($a instanceof firstClass)); 	 	 	 	 19
?>											 20
</body>										 21
</html>										 22

Explanation
Line 17
var_dump($a instanceof secondClass);
In this line, the instanceof operator is checking whether the $a object is an instance of the class
secondClass.

This line will display the following in the browser:

bool(true)

The working of Line 18 and Line 19 is same as Line 17.

The output of Example 13 is displayed in Figure 7-13.

Figure 7-13 The output of Example 13

INTERFACE
An interface is a blueprint of a class. It is very much similar to the class but it contains only abstract
method. An abstract method is a method that is declared but contains no implementation. In
other words, an interface defines the task to be performed by the class but it does not specify the
procedure to perform it. The interface may also contain constants but it does not contain any
constructor because it cannot be instantiated. Interfaces can only be implemented by classes or
can be extended by other interfaces. A single interface can be implemented by any number of
classes and vice-versa. This means a class can implement multiple interfaces.

Functions, Classes, and Objects 7-39

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Declaring an Interface
You can declare an interface in the same way as you define a class except that you need to use
the interface keyword in the definition statement, as shown in the following syntax:

interface interface_name
{
	 public function();
	 public function();

}

In this syntax, the declaration of interface begins with the keyword interface followed by the
interface_name which is an identifier given by the programmer to specify the name of the
interface. Here, public specifies the scope of the method. The scope of the method defined
inside the interface body must be public. The methods inside an interface end with a semicolon
and contain no implementation.

For example:

interface demo
{
	 public function show();
	 public function sqr();
}

In the given example, the interface is the keyword used to declare the interface and demo is the
interface name. The interface demo contains two methods, show() and sqr() which are declared
as public. The methods of the interface are not defined in the body of the interface.

Implementing an Interface
Once an interface has been declared, other classes can implement that interface by using
the implements keyword in the class declaration statement. The syntax for implementing an
interface is as follows:

class class_name [extends superclass] implements interface_name
{
	 //Body of the class
}

In the given syntax, the class represented by class_name implements the interface that is
represented by interface_name. If a class implements an interface, all methods declared inside
the interface should be implemented by the class. Here, extends superclass is optional where
extends is the keyword used to inherit the parent class and superclass represents the parent class.

7-40					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

A class can also implement more than one interface by using comma to separate the list of
interfaces. The syntax for implementing more than one interfaces is as follows:

class class_name implements interface1, interface2, interfaceN
{
	 //Body of the class
}

In the given syntax, interface1, interface2, and interfaceN represent the names of different
interfaces in a program which can be implemented by a class.

Note
A class cannot perform multiple inheritance. It means that a single class cannot inherit multiple
classes. In PHP, multiple inheritance is possible only by using interface. This means a class can
inherit multiple interfaces but not multiple classes.

Extending an Interface
In this chapter, you have learned about inheritance. A class inherits the characteristics of another
class. In the same way, the concept of inheritance can be applied on interfaces also. An interface
can inherit the characteristics of another interface using the extends keyword. When an interface
is implemented by a class and the interface inherits another interface, the class must provide
the implementation for all methods of all interfaces that are inherited.

For example:

interface A
{
public function method1();
}
interface B extends A
{
public function method2();
}
class demo implements B
{
	 public function method1()
	 {
		 ----------;
		 ----------;
	 }
	 public void method2()
	 {
		 ----------;
		 ----------;
	 }
}

Functions, Classes, and Objects 7-41

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

In the given example, the interface A contains only one method method1() and the interface
B also contains only one method method2(). Here, the interface B inherits the characteristics
of the interface A by using the extends keyword and the class demo implements it. In this way,
inside the demo class, both the methods, method1() and method2(), of the interfaces A and
B are defined.

Example 14
The following program illustrates the use of extended interface. The program will perform
certain mathematical operations on the given values and the output is displayed in the browser.

<!Doctype html>								 1
<html>										 2
<head>										 3
<title>extend and implement interface</title>			 4
</head> 										 5
<body> 										 6
<?php										 7
	 interface mathematical 							 8
 	 {										 9
 		 public function mul($num1, $num2);				 10
 	 }										 11
 	 interface remainder extends mathematical				 12
 {										 13
 		 public function rem($a, $b);					 14
 }										 15
	 class Extend_interface implements remainder			 16
 {										 17
		 public $a, $b, $num1, $num2 ;					 18
 		 public function mul($num1, $num2)				 19
 	 {										 20
		 $this->num1 = $num1;						 21
	 	 $this->num2 = $num2;						 22
 	 }										 23
 public function rem($a, $b)						 24
 	 {										 26
		 $this->a = $a;							 27
	 	 $this->b = $b;							 28
 	 } 										 29
 public function result()							 30
 	 {										 31
	 echo “The multiplication is: ”.($this->num1 * 		 32
	 $this->num2). “
”; 	
	 echo “The remainder is: ”.($this->a % $this->b). 		 33
	 “
”;
 }										 34
}											 35
$res_obj1 = new Extend_interface;					 36

7-42					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

$res_obj1->mul(8 , 7); 							 37
$res_obj1->rem(10 , 8); 							 38
return $res_obj1->result(); 						 39
?>											 40
</body>										 41
</html>										 42

Explanation
Lines 8
interface mathematical
In this line, mathematical is defined as an interface using the keyword interface.

Line 10
public function mul($num1, $num2);
This line contains the declaration part of the method mul() where $num1 and $num2 are the
two parameters passed inside the parentheses of the method mul(). This method is declared
inside the mathematical interface. The implementation part of this method will be defined by
the class that implements the mathematical interface.

Line 12
interface remainder extends mathematical
In this line, remainder is defined as an interface by using the keyword interface. Also, it inherits
another interface mathematical by using keyword extends.

Line 14
public function rem($a, $b);
This line contains the declaration part of the rem() method where $a and $b are the two
parameters passed inside the parentheses of the method rem(). This method is declared inside
the remainder interface. Therefore, it will be implemented by the class that implements the
remainder interface.

Line 16
class Extend_interface implements remainder
In this line, the class Extend_interface implements the interface remainder by using the
keyword implements. This class can implement all methods of both the interfaces, remainder
and mathematical.

Lines 19 to 23
public function mul($num1, $num2)
 {
		 $this->num1 = $num1;
	 	 $this->num2 = $num2;
 }
These lines contain the implementation of the method mul() of the interface mathematical.
Inside the body of method, $this is the pre-defined variable used to access the current object.
Here, num1 and num2 are the property names without the $ sign, and $num1 and $num2
properties are assigned to them, respectively.

Functions, Classes, and Objects 7-43

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Lines 24 to 29
public function rem($a, $b)
 {
		 $this->a = $a;
	 	 $this->b = $b;
 }
These lines contain the implementation of the method rem() of the interface remainder. Inside
the body of method, $this is the pre-defined variable used to access the current object. Here,
a and b are the properties name without the $ sign, and $a and $b properties are assigned to
them, respectively.

Lines 30 to 34
public function result()
 {
	 echo “The multiplication is: ” .($this->num1 * $this->num2).”
”;
	 echo “The remainder is: ”.($this->a % $this->b). “
”;
 }
These lines contain the declaration of the method result() of the class Extend_interface. Inside
the body of method, the public properties $num1 and $num2 of the interface mathematical
are accessed directly through the $this keyword. The multiplication operation is performed
between both the properties. And, the public properties $a and $b of the interface remainder
are accessed directly through $this keyword. The remainder operation is performed between
both the properties.

The output of Example 14 is displayed in Figure 7-14.

Figure 7-14 The output of Example 14

ANONYMOUS CLASS
When a class is declared without a class name, it is known as anonymous class. It is useful to
create an object without creating a normal class. Anonymous class is introduced in PHP 7. It can
be defined by using keyword new class. Anonymous class features are very similar to normal
class. It can implement interfaces, extend classes, use constructor, and so on.

If you nest anonymous class inside the outer class (normal class) then the anonymous class
cannot access any private or protected methods and properties of the outer class directly. The
anonymous class can access the private properties of the outer class by using constructors. And it
can also access the protected properties or methods of the outer class by extending the outer class.

7-44					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Example 15
The following program illustrates the use of anonymous class. The program will perform the
addition operation on 3 numbers by accessing the private and protected properties and methods
of outer class inside the anonymous class and display the output in the browser.

<!Doctype html>								 1
<html>										 2
<head>										 3
<title>Anonymous class</title>						 4
</head> 										 5
<body> 										 6
<?php										 7
class Normal									 8
{											 9
 private $property = 20;						 10
 protected $property2 = 30;						 11
 protected function number()						 12
 {										 13
 return 100;								 14
 }										 15
 public function anoy_func()						 16
 {										 17
 return new class($this->property) extends Normal {	 18
 private $property3;						 19
 public function __construct($property)			 20
 {									 21
 $this->property3 = $property;			 22
 }									 23
 public function sum()							 24
 { echo “The sum is ”;							 25
 return $this->property2 + $this->property3 + $this->number();26
 		 }								 27
 };									 28
 }										 29
}											 30
echo (new Normal)->anoy_func()->sum();					 31
?>											 32
</body>										 33
</html>										 34

Explanation
Line 18
return new class($this->property) extends Normal {
In this line, the function anoy_func() declared in Line 16 is returning an anonymous class. Here,
new class is the keyword used to create anonymous class. The anonymous class is extending
the outer class Normal to access the protected property $property2 and protected method
number() in anonymous class.

Functions, Classes, and Objects 7-45

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 20
public function __construct($property)
In this line, the private property $property declared in Line 10 of outer class Normal is accessed
by using constructor __construct() inside the anonymous class.

Line 31
echo (new Normal)->anoy_func()->sum();
In this line, the object of class Normal is called directly by using the new keyword which is further
calling the functions anoy_funct() and sum() of anonymous class to display the result. This line
will display the following in the browser:

The sum is 150

The output of Example 15 is displayed in Figure 7-15.

Figure 7-15 The output of Example 15

.
 Self-Evaluation Test
Answer the following questions and then compare them to those given at the end of this
chapter:

1.	 A __________ is a group of statements that perform a specific task and can be used multiple
times in a program.

2.	 Function __________ are used to pass information to the function.

3.	 The __________ function is used to display the variable related information.

4.	 The __________ stands for Cryptographically Secure Pseudo-Random Number Generator.

5.	 The property and method scope specifies the __________ of the properties or the methods
of a class.

6.	 The random_int() function is used to generate cryptographically secure pseudo-random
bytes in PHP. (T/F)

7.	 A constructor is a special method which is used to initialize the objects of a class. (T/F)

8.	 A class can implement only one interface. (T/F)

9.	 An anonymous class is declared without a class name. (T/F)
	

7-46					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

 Review Questions
Answer the following questions:

1.	 Function name can start with which of the following options?

(a) Only an alphabet
(b) Only an underscore
(c) Only digits					 	
(d) an alphabet or an underscore

2.	 Which of the following is the correct function name?

(a) _aBC12()					 (b) 2cOUNT()
(c) Hello#()				 	 (d) 4hEllo_1()

3.	 Which of the following functions is used to display the variable related information including
its data type?

(a) var_data()					 (b) var_detail()
(c) var_dump()				 	 (d) var_info()

4.	 Which of the following functions is used to generate cryptographically secure pseudo-random
bytes in PHP?

(a) random_int() 					 (b) secure_byte()
(c) random_bytes() 				 	 (d) crypt_dara()

5.	 Which of the following is a collection of data and methods?

(a) class					 	 (b) function
(c) constructor 					 (d) destructor

6.	 The private methods or the properties of a class can be accessed by the members of:

(a) same class and other classes			 (b) same class
(c) other classes					 (d) inherited class

7.	 Which of the following is known as living entity within a program?

(a) Class						 (b) Properties
(c) Methods						 (d) Object

8.	 Which of the following keywords is used to call the value of static method of parent class
inside the child class?

(a) parent						 (b) self
(c) friend						 (d) final

Functions, Classes, and Objects 7-47

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

EXERCISES
Exercise 1

Write a program to calculate the area of a square using inheritance.

Exercise 2
Write a program to add and subtract two numbers by implementing and extending the interface.

7-48					 	 Introducing PHP 7/MySQL
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Answers to Self-Evaluation Test
1. function, 2. arguments, 3. var_dump(), 4. CSPRNG, 5. visibility, 6. F, 7. T, 8. F, 9. T

