
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Chapter 1

Introduction to Java

 Learning Objectives
After completing this chapter, you will be able to:
• Understand history, evolution, and features of Java
• Understand the concept of OOPS
• Understand Java complier and interpreter
• Install Java development kit
• Write, compile, set the path, and run your first Java program
• Install NetBeans IDE
• Write, build, and run Java program in NetBeans IDE

 1-2 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

INTRODUCTION
This chapter introduces you to Java programming language and allows you to write your
first program in Java. In this chapter, you will get a brief idea about history, evolution, and
features of the language. Also, you will learn how to install Java and Net Beans IDE (Integrated
Development Environment) on your system and run Java programs. Moreover, you will gain
knowledge about the concept of object oriented programming as well as its importance in
developing Java programs.

 Note
1. An Integrated Development Environment (IDE) is a software application that provides
comprehensive features to computer programmers for software development. It generally consists
of a source code editor, build automation tools, and a debugger.

2. The examples in this book are tested on Windows platform which is itself written in Java.

HISTORY AND EVOLUTION OF JAVA
The first version of Java was developed by James Gosling at Sun Microsystems (which has since
been acquired by Oracle Corporation) in USA, in the year 1991. Initially, it was named as Oak
by James Gosling, but later in 1995, it was renamed to Java. The first version of the application
was developed for the use of electronic devices and circuits, and the plan got successful. Later
on, it was called the Green project that led to the invention of Java.

Apart from its general purpose use, it is considered as a leading web-based technology. When it
was invented, nobody knew how popular it would be. It is the first object oriented programming
language that is platform independent and can run on any platform. It allows the developers
to follow “Write Once, Run Anywhere” (WORA) concept. Though the base syntax of Java has
been taken from C and C++, still it is quite different from C or C++.

There are four primary version of Java available:

•	 Java Standard Edition (Java SE)
•	 Java Enterprise Edition (Java EE)
•	 Java Micro Edition (Java ME)
•	 JavaFX

The Java based applications used for computer software are developed on the Standard Edition of
Java. Java based applications used for web servers are developed using the Enterprise Edition of
Java. Applications for the multimedia platform are developed using JavaFX and the applications
for mobile devices are developed on the Micro Edition of Java.

You can create two types of programs using the Java programming language: applets and
applications. Applets are smaller pieces of programming codes intended for use on the web
browsers. They are lighter applications, generally used to provide navigation enhancement or
additional interactivity to the browser.

The other type of software you can create using Java is a console application. These applications
are standalone programs meant to be run on your computer like any other program. IDEs like
NetBeans comes with integrated console environment that you can use to run your Java programs.

Introduction to Java 1-3

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Note
Unlike standalone applications, Java applets do not need any interpreter in order to execute.

FEATURES OF JAVA
Java became popular due to its advance features such as platform independency, simplicity,
security, and so on. Some of the major features of Java are explained next.

Platform Independency
As you are already aware that Java is a platform independent language, implying that it can
run on any operating system. For example, a Java application written on the Windows platform
can run on Linux, Machintosh, and any other operating system. When Java runs on a system, it
converts the source code into the byte code. This byte code is generated by Java compiler with
the help of JVM(Java Virtual Machine) and can work independently on any system. You will
learn more about JVM later in this chapter. Due to its portability, an application created in Java
on one platform can be run on any other platform.

Simplicity
The syntax of Java language is very simple compared to other languages. It is very much similar
to C or C++ language. Every keyword in Java is meaningful; as a result, you can easily identify
the action of a keyword.

Double Stage System
Java offers you the facility to compile programs in two stage. In the first stage, the Java compiler
converts the source code into the byte code and in the second stage, the Java interpreter converts
that byte code into the machine code. Since a computer can understand the machine code, it
executes the code and produces the output. This is called the Double Stage System.

Object Oriented
Java is completely an object oriented programming language because it treats everything as
an object. The basic concept of Java was taken from C and C++ language. C is not an object
oriented programming language, but a structure based programming language. However,
C++, which is an extension of C, is an object oriented programming language. Java is more
independent than C or C++. You will know more about similarities and differences between
Java, C, and C++ later in this chapter.

Security
Security is one of the most important issues in any programming language. If your application
is not secure, your data is also not secure. Java is security based language because Java does not
support the pointers like C++ does, so, the code is not able to access the memory directly. The
internal system of Java starts verifying the code that tries to access its memory.

 1-4 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Multithreading
Java supports multithreading, which means that Java can handle multiple tasks in a single process.
This is one of the most important features of Java. Also, it supports thread synchronization,
which helps multiple threads to work simultaneously in a synchronized way. You will learn more
about multithreading in the later chapters.

Easy to Operate
Java is very user-friendly and easy to operate. It does not require any specific environment for
writing a Java program. You can simply type the Java program in any text editor. For example,
you can write a Java program in Notepad and after saving the program, you can execute it using
the command window as you do in C or C++ programming language.

CONCEPT OF OBJECT ORIENTED PROGRAMMING
When talking about object oriented programming system, the name of Java comes first as it
fulfills all requirements of a true object oriented programming system, such as it supports
Data Abstraction, Encapsulation, Polymorphism, and Inheritance.

Classes, instances, and objects are integral part of a program, if it is created by using an
object oriented programming language such as Java. A class can be defined as a template/
blueprint that describes the behavior/state of different objects. Objects are the specific elements
that exhibit the properties and behaviors defined by its class. Objects of the same type are said
to be of same type or same class. Once you derive an object from a class, it becomes an instance.
The actions that an object can take are called methods. Methods in Java are called procedures,
methods, functions, or subprograms in other languages.

To understand the concept of classes and objects, let’s say Vehicles is a class. Under Vehicles
class, you have different types of vehicles such as Cars, Buses, Trucks, and so on. Cars, Buses,
and Trucks are the objects under the Vehicles class.

Features of Object-Oriented Programming
There are certain features that have made object-oriented programming very popular. These
features are discussed next.

Data Abstraction
In terms of object oriented programming language, Data Abstraction means showing only
functionality and hiding implementation details. It helps in hiding the complexities of multiple
data. Real world example of data abstraction is sending E-mail, wherein a user only composes a
mail and sends it to another user without knowing the internal process running in background.

Encapsulation
This is another feature of object oriented programming language. In encapsulation, methods
and data are combined or wrapped together in a single unit. In other words, the method and
data are encapsulated and they work as a single entity known as object, refer to Figure 1-1. This
concept is also called data hiding. In this process, the data cannot be accessed by any external
method or process, and only the methods that have been combined to work as a single entity
can access it.

Introduction to Java 1-5

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

 Figure 1-1 Encapsulation of data and method

Polymorphism
Polymorphism is a Greek word, wherein poly means many and morph means form. So,
polymorphism is “one name many forms”. In the object oriented concept, when a single operation
plays multiple roles, it is called polymorphism.

The best example of polymorphism is method overloading. In method overloading, there can be
more than one method with same name but having different number of arguments. For example,
there can be a class called calculate with two methods calculate_area(l, b) and calculate_area(s).
These methods have the same name calculate_area provided they have different number
of arguments. So when two values are passed by the user, the method having two arguments
calculate_area(l, b) will be invoked. But if the user passes single value, the method having single
argument calculate_area(s) will be invoked.

Inheritance
Inheritance is a key feature of object oriented programming. It gives you the benefit of reusing
methods and properties of a class and therefore, it reduces the lines of code in a Java program.
When you create a class, you define some features in the form of properties and methods in it.
Once the class is created, and later on you are required to create another class that has all features
(properties and methods) of the existing class in addition to some new features (methods and
properties). In that case, you do not need to create a separate class. You can do so by deriving a
new class from the existing class and adding new features in the new class. By this way, you can
avoid repeating same code.

Technically, inheritance is a technique of deriving new class from an existing class and reuse the
features of the existing class in a new class. The derived class is also called sub-class or child class
and the class from which you derive the new class is called super class or base class or parent
class. Figure 1-2 will help you understand the concept of inheritance in a simple and easy way
through an illustration.

As shown in Figure 1-2, Vehicles is a base class and it has two sub classes: Two Wheeler and
Four Wheeler. These two subclasses, Two Wheeler and Four Wheeler, further have two more
subclasses each Honda and Suzuki, and Toyota and BMW respectively. So, Two Wheeler and
Four Wheeler will be the base classes for its subclasses and Vehicles will be the base class for
all the subclasses.

 1-6 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

 Figure 1-2 The concept of inheritance

Types of inheritance in Java
There are mainly three types of inheritance in java. These are as follows:

a. Single Inheritance
b. Multilevel Inheritance
c. Hierarchical Inheritance

Single Inheritance
When a single class is derived from single super class, it is called single inheritance. Figure 1-3
illustrates the concept of single inheritance, wherein class B inherits the properties of class A.

Multilevel Inheritance
When a class is derived from another derived class, it is called multilevel inheritance.
Figure 1-4 shows multilevel inheritance, wherein the class C inherits the properties of the
class B, which is a sub-class of class A.

Figure 1-3 The concept of single inheritance Figure 1-4 The concept of multilevel inheritance

Introduction to Java 1-7

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Hierarchical Inheritance
When multiple classes are derived from a single base class, it is called hierarchical inheritance.
Figure 1-5 illustrates the concept of hierarchical inheritance, wherein class B and class C inherit
the properties of class A.

In object oriented programming, one more type of inheritance, called multiple inheritance is
found. In multiple inheritance, a class is derived from more than one super class. The designers
of Java considered multiple inheritance to be too complex and does not go well with the concept
of keeping Java simple. Therefore, this type of inheritance is not implemented in Java. Figure 1-6
illustrates the concept of multiple inheritance.

Figure 1-5 The concept of hierarchical inheritance Figure 1-6 The concept of multiple inheritance

Java fulfills the requirement of multiple inheritance with the help of Interface. Interface is
another important feature of object oriented programming and is discussed next.

Interface
An interface is a blueprint of a class. It is very much similar to the class but it contains only abstract
method. An abstract method is a method that is declared but contains no implementation. The
interface may also contain constants, method signatures, default methods, and static methods
but it does not contain any constructor because it cannot be instantiated. Interfaces can only be
implemented by classes or extended by other interfaces. A class inherits the abstract methods
of an interface to implement it. You can use interfaces to achieve abstraction and multiple
inheritance. You can also derive a class from any number of interfaces. Figure 1-7 illustrates the
concept of interface, wherein class C inherits the properties of interface A and interface B as
well as class A.

Figure 1-7 The concept of interface

 1-8 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

JAVA COMPILER AND INTERPRETER
When you run a Java program, it passes through two stages: compilation and interpretation.
During compilation, the source code is converted into an intermediate language by the compiler.
Source code is a program written in Java and the intermediate code is a special type of code that
is generated by the Java compiler. The intermediate code is known as Java byte-code or simple
byte-code. As byte code is not a machine specific code, it needs to be converted into machine
level code, and this task is performed by Java Interpreter. The Java interpreter reads the byte
code line-by-line and converts it into the machine level code. Now, the computer executes the
machine level code.

 Note
1. Compiler is special purpose program that converts a high-level language (easy for people to write
and to understand) such as Java program into a low-level language program (machine language).

2. Byte-code is a machine language for a virtual computer called Java Virtual Machine (JVM).
Each computer platform has its own program to execute the byte-code instructions.

Java Virtual Machine
You know that in a Java program, the source code is converted into the byte-code, which is in turn
converted to the machine code. Byte-code is not the machine language for any type of computer.
In fact, it is a machine language for the fictitious computer called Java Virtual Machine or JVM.
The term JVM is used to refer to the software that acts like a fictitious computer.

JVM has a very powerful architecture. Whenever you install JDK, it is automatically loaded
into your computer memory and comes into action whenever you compile a Java program.
The diagrammatic representation of converting a Java program into a machine specific code
is shown in Figure 1-8.

Figure 1-8 Converting Java program into machine specific code

Introduction to Java 1-9

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

INSTALLING JAVA DEVELOPMENT KIT
In this section, you will learn about the installation process of Java SE Development Kit (JDK)
in your computer, as well as the procedure to run a Java program. Installing JDK is a very
easy process, and it takes few minutes to install it. You can download the Windows version of
JDK from the Oracle website to run it on the Windows platform. You can try the following link
to download the latest version of JDK:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Initially, you will be prompted to accept the license agreement, select the Accept License
Agreement radio button and then click the jdk-8u111-windows-x64.exe corresponding to the
Windows x64 entry. Save the file on your hard drive. If you have a 32-bit machine, click on
the jdk-8u111-windows-i586.exe link corresponding to the Windows x86 entry. Once the file is
downloaded completely, you need to run the setup on your system. During installation, leave
the default settings of the setup intact. It will take a few minutes to complete the setup. Choose
the Finish button to make sure that complete installation has been done. Now, you are ready
to write and run Java programs.

Tools of JDK
The basic tools that will be installed when you install JDK on your system are discussed in the
Table 1-1.

Tool Description

javac This is the Java compiler, which converts the Java source code
into byte code.

java This is the Java interpreter, which converts the byte code into
machine specific code.

javadoc This tool is used to create HTML documentation.

appletviewer This tool interprets Java applet classes.

javah This tool is used to write native methods.

javap This tool is used as a disassembler of class files.

jdb This is a Java debugger tool and is used to debug a Java program.

jar This tool is used to manage Java Archive(JAR) files.

Table 1-1 List of JDK tools

JAVA STATEMENTS
Before writing and executing a Java program, you should know the basic keywords and syntax
that are used in a simple Java program. Most of the keywords in Java are similar to C++. Some
of the important keywords and syntax are discussed next.

 1-10 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Java API and Packages
Java API (Application Programming Interface) contains a number of classes and methods, which
are grouped into different types of packages. Java API is used in various applications of Java.
Packages can be of two types.

 a. Built-in packages
 b. User defined packages

Built-in Packages
Built-in packages are predefined in the Java library. There are a variety of built-in packages in
Java that can be used in different ways. Every existing class in Java belongs to a package. Some
important built-in packages that are widely used in Java programs are discussed next.

Java.lang
This is the most widely used package in Java, which provides the fundamental classes for
programming. For example, Integer, Float, Math, String, Thread, and so on.

Java.IO
This package is used to handle input and output files of Java programs. It contains classes like
Reader, Writer, Stream, and so on.

Java.util
It contains miscellaneous utility classes involving data structures, string manipulation, time and
date, and so on.

Java.net
This package is used for Java network programming, socket programming, and so on.

Java.awt
This package provides classes for the GUI(Graphical User Interface) based applications.

User-defined Packages
You can also create your own package by using the package keyword with a valid name. Packages
created in this way are called user-defined package. An example of a package is given below:

package book;
public class JavaBook
{
 public static void main(String[] args)
 {
 System.out.println(“Hello Java”);
 }
}

Introduction to Java 1-11

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

In this example, package is a keyword and book is the name of the package that contains a
class with the name JavaBook. To import and use such type of packages in any other program,
follow the syntax given next:

import book.*

The import Keyword
As the name suggests, this keyword is used to import packages, classes, or methods into your
existing program. These packages or classes can be user-defined or in-built. For example, if you
do not import a package into your existing program, you will not be able to access the features
of all classes and methods of the package in your current program. To access the features of all
classes and methods of the package, you need to import the package into your program.

For example:

 import java.lang.Math;

It imports the Math class of the lang package. It is the in-built package of Java.

You can also import the package as follows:

 import java.lang.*;

Here * means all the classes in the package. It imports all the classes of the lang package.

The class Keyword
The class is the base of object oriented programming language. It contains methods, objects,
properties, variables, and many more. Any valid name of class can be used to define a class
prefix by a class keyword.

For example:

 class JavaBook

This line indicates a class with the name JavaBook.

System.out.println() Statement
This statement is used to print the output to the next line of the command prompt. Here println
indicates the member of the out object, whereas System indicates class.

For example:

 System.out.println(“Hello Java”);

This statement will print the string Hello Java to the next line of the command prompt.

 1-12 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

 Note
Instead of keyword println, you can use keyword print. Both are same, but the only difference is,
println shows the output in next line whereas print shows the output in the same line.

Access Specifiers
Access specifiers are the keywords that can be used to declare a class or a method to make it
accessible under different scopes within a class or a package. In Java, there are four types of access
specifiers and they are explained next.

public
The public access specifier is declared when you want to make a method or any variable of a
class accessible to any class in the Java program. These classes may be in the same package or
in another package. The public access specifier achieves the widest scope of accessibility among
all modifiers.

For example:

public class JavaBook
public Book() {...........}

default
If any modifier is not set, then it follows default accessibility. No specifier keyword is required
for it. The default modifier is accessible only from within the package and not from outside it.

For example:

class JavaBook
Author() {...........}

protected
The protected access specifier is declared when you want to make the members of a class
accessible in the class that defines them and also in other classes which inherit from that class.

For example:

protected class JavaBook
protected Author() {...........}

private
The private access specifier is declared when you want the members of a class to be accessed
only by that particular class and not by other classes.

For example:

private class JavaBook
private Author() {...........}

Introduction to Java 1-13

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Comments in Java
You can write comments in a Java program for your convenience. Java supports two types of
comments that are also supported by C++. These are single line comment and multiple line
comments.

Single Line Comment
A single line comment is used when you want to write a topic or a small comment in a Java
program. It starts with two forward slashes (//).

For example:

//This is a single line comment.

Multiple Line Comment
A multiple line comment is used when you want to write a long description or a small
documentation of the program. Multiple line comments are enclosed within /* and */. Anything
between these marks is ignored by the compiler.

For example:

/*This is a multiple lines comment. Anything
 inside it is ignored by the compiler.*/

WRITING THE FIRST JAVA PROGRAM
There are many editors available in the market to write and run a Java program. You can
either use an editor or simply use a Notepad editor to write a Java program. In this section,
you will learn how to write Java programs in a Notepad editor, and to compile and run them
in command prompt.

To write a Java program, first of all, open the Notepad editor from the Start menu and write the
program in it and then save the program with the file name FirstProgram.java.

Example 1

The following example is a simple Java program. The program will print Hello Java on the screen.

// The program will print Hello Java
1 class FirstProgram
2 {
3 public static void main(String args[])
4 {
5 System.out.println(“Hello Java”);
6 }
7 }

Explanation
The line-by-line explanation of the given program is as follows:

 1-14 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 1
class FirstProgram
This line indicates the creation of a class with the name FirstProgram.

Line 2
{
This line indicates the start of the definition of the FirstProgram class.

Line 3
public static void main(String arg[])
This statement is used in every Java program and is the main method of Java. This is the entry
point of every program. The control will always reach to this statement.

public
This is an access specifier, any method with public access specifiers will be accessible throughout
the program.

static
The static keyword allows the main() method to be called without creating a particular instance
of the class. This is necessary because the main() method is called by the Java interpreter before
any objects are created.

void
The void keyword indicates that the main() method will not return any value.

main(String args[])
The args[] is an array of objects of the string class which is the parameter of the main() method.

Line 4
{
This line indicates the start of the definition of the main() method.

Line 5
System.out.println(“Hello Java”);
This line will print Hello Java on the screen.

Line 6
}
This line indicates the end of the definition of the main() method.

Line 7
}
This line indicates the end of the definition of the FirstProgram class.

 Note
The initial line in the program // The program will print Hello Java is not a part of program.
It is a single line comment and for reference only.

Introduction to Java 1-15

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Compiling and Running a Java Program
A Java program is easy to compile and run. You can compile a Java program in any command
editor. Before compiling and running a Java program, you need to know the two keywords that
are used to compile and run a Java program. These keywords are discussed next.

The javac Command
The javac command is used to compile a Java program. You can compile a Java program with
the javac command in the following way:

javac Name_of_file with extension

Here, javac is a keyword and Name_of_file is the file name of the Java program with the
extension .java.

The java Command
The java command runs the Java program after compilation and then displays the output to
the command prompt.

You can run a Java program with the java command in the following way:

java Name_of_file

Here, java is a keyword and Name_of_file is the class file name of the Java program which is
generated after compilation of program. Note that while executing the java command, you do
not need to add extension of the Java file.

 Note
It is a good practice to save your java program with the class name which is in the program to
avoid errors. For Example, Class name in the program is FirstProgram then file name must be
saved as FirstProgram.java.

SETTING THE PATH OF PROGRAM DIRECTORY
To compile and run a program, it is necessary to set a path (location) to locate JDK binaries
such as “javac” and “java”. The environment variable path is used to locate these JDK binaries.

There are two methods for setting the path directory. First, you can set the path on a temporary
basis, which means you can use this path till the command editor is open. Once you exit the
command editor, you cannot use it again. Secondly, you can set the path permanently, which
means the path will not be lost even after you shut down your computer. Both these methods
are discussed next in detail.

Setting the Path on a Temporary Basis
The following steps are required to set the path directory of your Java project on a temporary basis:

Step 1
Create a folder anywhere in your hard drive containing all Java programs and name them as
per your convenience. For example, Java Projects.

 1-16 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Step 2
Open the command editor from the Start menu. Enter into the drive and directory, where you
will save your file. For example, your root directory is Ch01 which is inside Java Projects directory
in the D: drive. You can do so by following the commands given in the Figure 1-9.

Figure 1-9 Commands to change the current drive and directory

Step 3
Write the following command at the command prompt:

path=The full path of bin directory of Java

Here, the path is a command. Write the full path of the bin directory of Java after the assignment
operator and then press ENTER, as shown in Figure 1-10. The path will be set.

Figure 1-10 Setting the path of the bin directory on temporary basis

Step 4
Now, you can compile and run all your programs in your project directory. You can run Example
1 to test. Repeat the same process for compiling and running the program that you had learned
earlier. The program will be executed without any errors.

The output of Example 1 after setting path on temporary basis is displayed in Figure 1-11.

Introduction to Java 1-17

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 1-11 The output of Example 1 after setting path on temporary basis

 Note
To go back to previous directory, you can directly write cd\ in command prompt.

Setting the Path Directory on a Permanent Basis
The following steps are required to set the path directory of your Java project on a permanent
basis:

Step 1
Go to Control Panel from the Start menu. Next, click on the System icon; the View basic
information about your computer window will be displayed, as shown in Figure 1-12.
Alternatively, right-click on Computer from the Start menu and then choose properties to
display the View basic information about your computer window.

Step 2
Next, choose Advanced System Setting option from the View basic information about your
computer window; the System Properties dialog box will be displayed, as shown in Figure 1-13.

Step 3
In the System Properties dialog box, choose the Advanced tab and then choose the Environment
Variables button; the Environment Variables dialog box will be displayed, as shown in Figure 1-14.

Step 4
Choose the New button in the System variables area of the Environment Variables dialog box;
the New System Variable input box will be displayed.

Step 5
Enter PATH in the Variable name text box and enter complete path of the bin directory of
your JDK in the Variable value text box and choose the OK button, as shown in Figure 1-15.

 1-18 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 1-12 The View basic information about your computer window

Figure 1-14 The Environment variables
dialog box

Figure 1-13 The System Properties dialog
box

Introduction to Java 1-19

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 1-15 The New System Variable input box

Again, choose the OK button in the Environment Variables dialog box and then choose the
OK button in the System Properties dialog box.

Now, the path directory is set permanently and you can compile and run the program anywhere
in your hard drive using the command editor.

The output of Example 1 after setting path on permanent basis is displayed in Figure 1-16.

Figure 1-16 The output of Example 1 after setting path on permanent basis

INSTALLING NetBeans IDE
NetBeans is a popular free open source IDE for quickly and easily develop desktop, mobile, and
web applications using Java, JavaScript, HTML5, PHP, C/C++, and much more. Most of the
programmers use IDE because it eliminates the need for separate tools such as a text editor, a
compiler, and a runner program.

An IDE integrates all these tools into a single toolset with a graphical user interface. There are
many IDEs available on internet some of them have their own compilers and virtual machines.

To install NetBeans, navigate to http://www.oracle.com/technetwork/java/javase/downloads/index.
html and then click on the Download button corresponding to the NetBeans with JDK 8 entry,
refer to Figure 1-17.

 1-20 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 1-17 NetBeans download link

On the next page displayed, select the Accept License Agreement radio button and then click
the jdk-8u73-nb-8_1-windows-x64.exe corresponding to the Windows x64 entry. Save the file on
your hard drive. If you have a 32-bit machine, click on the jdk-8u73-nb-8_1-windows-i586.exe
link corresponding to the Windows x86 entry. Double-click on the jdk-8u73-nb-8_1-windows-x64
file; the installation process begins and you are prompted to accept the license agreement. Accept
it and go ahead with the rest of installation process; the NetBeans shortcut icon will be placed
on the desktop. Double-click on this icon; the NetBeans interface will be displayed, as shown
in Figure 1-18.

Figure 1-18 The NetBeans Interface

Introduction to Java 1-21

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

WRITING YOUR FIRST JAVA PROGRAM IN NETBEANS
The first step in writing the first Java program in netbeans is to create a new empty project in
your preferred IDE, NetBeans in this case. To create a new project, choose File > New Project
from the NetBeans menu bar to open the New Project dialog box, as shown in Figure 1-19.

Figure 1-19 The New Project dialog box

In this dialog box, select Java in categories and Java Application from the Project list and then
choose the Next button; the New Java Application dialog box will be displayed, as shown in
Figure 1-20.

From the Name and Location area of the dialog box, enter the name of the project as NetProgram
in the Project Name edit box. Choose the Browse button corresponding to the Project Location
field if you want change the location of the projects and then choose the Finish button to close
the dialog box and create the project.

The project is displayed in the Project window at the left in the interface, refer to Figure 1-21.

 1-22 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 1-20 The New Java Application dialog box of Netbeans

Figure 1-21 Project NetProgram displayed in the Project window

Introduction to Java 1-23

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The following code is displayed in the NetProgram.java tab of the editor.

 1 /*
 2 * To change this license header, choose License Headers in Project
 Properties.
 3 * To change this template file, choose Tools | Templates
 4 * and open the template in the editor.
 5 */
 6 package netprogram;

 7 /**
 8 *
 9 * @author CADCIM
 10 */
 11 public class NetProgram {

 12 /**
 13 * @param args the command line arguments
 14 */
 15 public static void main(String[] args) {
 16 // TODO code application logic here
 17 System.out.println(“Cadcim Technologies”);
 18 }
 19 }

Explanation
The line-by-line explanation of the given program is as follows:

Line 1 to 5
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
These lines are multiline comment. Anything between /* and */ is ignored by the compiler.

Line 6
package netprogram;
This line defines the package of the class where package is the keyword and netprogram is the
name of the package.

Line 7 to 10
/**
*
* @author CADCIM
*/
Again, these lines are multiline comment which is ignored by the compiler.

 1-24 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 11
public class NetProgram {
In this line, public is an access specifier which is accessible throughout the program. class is a
keyword and NetProgram is the name of the class and the curly bracket indicates the start of
the definition of the class.

Line 12 to 14
/**
* @param args the command line arguments
*/
Again, these lines are multiline comment which is ignored by the compiler.

Line 15
public static void main(String[] args) {
This line contains the main() method which is treated as the starting point of every Java program.
The curly bracket indicates the start of the definition of the main() method.

Line 16
// TODO code application logic here
This is a single line comment which is ignored by the compiler.

Line 17
System.out.println(“Cadcim Technologies”);
This line delivers the output Cadcim Technologies on the screen when Java program runs.

Line 18
}
This line indicates the end of the definition of the main() method.

Line 19
}
This line indicates the end of the definition of the NetProgram class.

To run the project, choose Run > Run Project from the menu bar or press F6. On successful
run, the BUILD SUCCESSFUL message will be displayed in the Output window at the bottom
of the interface. If there are any error(s) in the program, a window will be displayed with errors.
You need to fix the error(s) and then rebuild the program.

The following output is shown in the Output window at the bottom of the interface.

Output
Cadcim Technologies
BUILD SUCCESSFUL (total time: 0 seconds)

Introduction to Java 1-25

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

 Self-Evaluation Test
Answer the following questions and then compare them to those given at the end of this
chapter:

1. What was the name initially given to Java ?

 (a) Aok (b) Oak
 (c) Ako (d) Oka

2. On which of the following platforms can Java run?

 (a) Linux (b) Windows
 (c) Mac (d) All of these

3. Which of the following inheritance is not supported by Java?

 (a) Multilevel Inheritance (b) Multiple Inheritance
 (c) Single Inheritance (d) Hierarchical Inheritance

4. Which of the following is supported by Java?

 (a) Data Abstraction (b) Encapsulation
 (c) Polymorphism (d) All of these

5. What do you call an inheritance, wherein multiple classes are derived from one super class?

 (a) Single Inheritance (b) Multilevel Inheritance
 (c) Hierarchical Inheritance (d) Multiple Inheritance

6. Which of the following commands is used to compile a Java program?

 (a) java (b) javap
 (c) javac (d) jvm

7. The term IDE stands for __________.

8. __________ helps in hiding the complexities of data.

9. In Encapsulation, methods and data are combined into a single unit. (T/F)

10. Java applets do not need any interpreter in order to execute. (T/F)

11. The javac command is used to interpret a Java program. (T/F)

12. While executing the java command, there is no need to add the extension file(.java). (T/F)

 1-26 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

 Review Questions
Answer the following questions:

1. What is byte code? How is it generated?

2. What is the use of javac and java commands?

3. What is JVM? How does JVM handle the byte-code?

4. What is the use of import keyword in java?

5. Check the syntax error in the following program and after correction, give the output of
the program.

Class Hello
{
 Public static void main(String args[])
 {
 system.out.println(“Hello”)
 System.out.print(‘Welcome to the exciting world of Java’);

 }
}

6. What is the difference between the following two statements?

 System.out.print(“Hello World!”);
 System.out.println(“Hello World!”);

EXERCISE
Exercise 1

Write a program to print the following statement on the screen:

Java is an interesting language.
It is easy to learn.

Answers to Self-Evaluation Test
1. b, 2. d, 3. b, 4. d, 5. c, 6. c, 7. Integrated Development Environment, 8. Data Abstraction,
9. T, 10. T, 11. F, 12. T

