
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Chapter 2

Fundamental
Elements

of Java

 Learning Objectives
After completing this chapter, you will be able to:
• Understand the concept of identifiers
• Understand the concept of keywords
• Understand the concept of data types
• Understand the escape sequences
• Understand the concept of variables
• Understand the concept of type conversion
• Understand the concept of operators
• Understand the concept of command-line arguments

2-2 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

INTRODUCTION
In this chapter, you will learn about the fundamental elements of Java such as identifiers,
keywords, literals, data types, variables, operators, and so on. Identifiers are the names of
packages, classes, interfaces, methods, or variables. Literals are notations that represent a fixed
value to be stored in variables. The data type of an element specifies the kind of data stored in
it and the range of values that a data element can hold. A variable is a named storage location
where the data can be stored. An operator is defined as a symbol that represents an operation.
In this chapter, you will also learn about the concept of type conversion.

IDENTIFIERS
All components of Java require names. Therefore, identifiers are names of packages, classes,
interfaces, methods, or variables. To name an identifier, you must follow certain rules. These
rules are as follows:

a. Identifier must start with an alphabet (A-Z, a-z) or an underscore(_) or dollar sign ($) but
not with a digit.

b. After the first character, an identifier can have any combination of characters which can be
an alphabet or digit but no special character except underscore (_) and dollar sign ($).

c. Java is case sensitive, so the uppercase and lowercase characters are considered individually
by the compiler like Cadcim and CADCIM are two different identifiers.

d. Java keywords cannot be used as identifiers.

The following variable names are valid in Java:

idname_6
id_name
_idname

The following variable names are invalid in Java:

6_idname //Starting with a digit
idname# //Using a special character (#) such as %, *, #, and so on
id name //Using space

KEYWORDS
Java programming language has some reserved keywords that cannot be used as identifier
names because they have special meaning for the compiler. Due to their specific functions in
the language, the keywords are highlighted in a different color for easy identification in most
integrated development environments of Java.

Fundamental Elements of Java 2-3

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

There are 50 keywords in Java which are listed as follows:

abstract assert boolean break byte
case catch char class const
continue default do double else
enum extends final finally float
for goto if implements import
instanceof int interface long native
new package private protected public
return short static strictfp super
switch synchronized this throw throws
transient try void volatile while

Some important points regarding Java keywords are given next:

a. const and goto are reserved keywords but not used.
b. All keywords are in lowercase.
c. true, false, and null are literals, not keywords.

DATA TYPES
Data type describes the size and type of values that can be stored in a variable. In any program,
you need to store a particular type of data in the computer’s memory. The compiler should know
the amount of memory that has to be allocated to that particular data. For this purpose, the
data types are used. The main role of a data type is to direct the compiler to allocate a specific
amount of memory to a particular type of data. Java is a strongly typed language, which means
each type of data is predefined as a part of the language. In Java, a data type is divided into
three categories:

1. Primitive data types
2. Derived data types
3. User defined data types

Note
 Variables will be discussed later in this chapter.

Primitive Data Types
The primitive data types are predefined by the Java programming language. These are the basic
data types. They are declaration types and are used to represent single values but not multiple
values. Java provides eight primitive data types that are as follows:

•	 byte
•	 short
•	 int
•	 long
•	 float
•	 double
•	 char
•	 boolean

2-4 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

These eight primitive data types are grouped into four different categories which are discussed
next.

Note
In most of the programming languages such as C++, the amount of memory allocated to a
particular data type depends upon the machine architecture. But in Java, the size of all data types
is strictly defined and it does not depend upon the machine architecture.

Integers
The integer data type is used only for those numbers that do not contain any fractional part
or decimal point. In other words, this data type is used only for signed whole numbers, either
negative or positive. In Java, four integer types are defined, byte, short, int, and long. The main
difference among them is the amount of memory allocated to each of them and the maximum
range of values that can be stored using each data type. Table 2-1 shows the size and range of
all integer data types.

Name Size (in bytes) Ranges

byte 1 -128 to 127

short 2 -32,768 to 32,767

int 4 -2,147,483,648 to 2,147,483,647

long 8 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Table 2-1 Integer types, their size and ranges

byte
 The byte is the smallest integer type. The size of byte data type is 8-bits (1 byte is equal to

8 bits) and it ranges from -128 to 127. Here, range means that the byte data type can store
-128 as the minimum value and 127 as the maximum value. This data type is very useful
when working with files or streams in Java. It is used to save space in large arrays. You can
create a variable of byte type by using the byte keyword with the variable name is given next:

 byte var_name;

 In this syntax, the variable var_name is declared as the byte data type.

short
 The short data type is used rarely in Java. The size of short data type is 16-bits (2 bytes)

and it ranges from -32,768 to 32,767. You can use it to save large space. You can create a
variable of the short type as given next:

 short var_name;

 In this syntax, the variable var_name is declared as the short data type.

Fundamental Elements of Java 2-5

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

int
 Among the integers, int is the most commonly used data type in Java. The size of int type

is 32-bits (4 bytes) and it ranges from -2,147,483,648 to 2,147,483,647. It is generally used
as the default data type for integer values unless there is a concern about memory. You can
create a variable of the int type as given next:

 int var_name;

 In this syntax, the variable var_name is declared as the int data type.

long
 Among the integers, long is the largest storage data type. This data type is required in those

cases when the range of int type is not large enough to hold the resultant value. The size
of the long type is 64-bits (8 bytes) and the range is large enough to hold the large whole
numbers. You can create a variable of the long type as given next:

 long var_name;

 In this syntax, the variable var_name is declared as the long data type.

Floating-point Types
The floating-point data types are used only for those numbers that contain a decimal point or
that have a fractional part. These types of numbers are also known as real numbers. In Java,
two floating-point types are defined, float and double. Table 2-2 shows the size and range of
these two data types.

Table 2-2 Floating-Point types, their size and ranges

Name Size (in bytes) Range(Approx.)

float 4 1.40e-45 to 3.40e+38

double 8 4.9e-324 to 1.8e+308

float
 The float type is used for single-precision values (the values, which contain upto 8 digits

after the decimal point). The size of float data type is 32-bits (4 bytes) and it ranges from
1.40e-45 to 3.40e+38. You can create a variable of float type as given next:

	 float	var_name;

 In this syntax, the variable var_name is declared as the float data type.

double
 As the name implies, the double type is used for double precision values (the values, which

contain upto 15 digits after the decimal point). This data type is mostly used in scientific
operations where the end user wants accuracy in the resultant values. The size of double
data type is 64-bits and it ranges from 4.9e-324 to 1.8e+308. You can create a variable of
double type, as given next:

2-6 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

 double var_name;

 In this syntax, the variable var_name is declared as the double type.

Characters
The char type is included in this category. In Java, the char data type is used to hold the single
character value that can be represented by alphabets, digits, and special symbols.

char
 As already discussed, the char data type is used to hold the character values that belong to

the Unicode character set. But the char type in Java is completely different from the char
type in other programming languages such as C, C++, and so on. In C/C++, the size of
char type is 8-bits (1 byte) and it can support only a few character sets such as English,
German, and so on. In Java, the size of char type is 16-bits (2 bytes) and it is used to hold
the values of Unicode character set. Unicode character set is a collection of those characters
which exist in all human languages. The range of char type is from 0 (minimum) to 65,535
(maximum). You can create a variable of char type as given next:

 char var_name;

 In this syntax, the variable var_name is declared as the char data type.

Note
 A character that is assigned to a char variable should be enclosed in single quotes ‘ ’.

Boolean
The primitive data type boolean comes under this category. It can be used for storing true or
false values.

boolean
 This data type can hold only one value, either true or false. The size of boolean data type

is 1-bit. This data type is used to hold only logical values. By default, it returns false. You
can create a variable of boolean type, as given next:

 boolean var_name;

 In this syntax, the variable var_name is declared as the boolean data type.

Derived Data Types
Derived data types are the data types whose variables can hold more than one value of same
type. They are not allowed to store multiple values of different types. They are made by using
primitive data types. Example of derived data types are arrays and string.

For example:

int a[]={10, 20, 30}; //valid array
int b[]={10,10.5,‘A’}; //invalid array
char carray[]={‘c’,‘a’,‘d’,‘c’,‘i’,‘m’};

Fundamental Elements of Java 2-7

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

User-defined Data types
User defined data types are the data types whose variables can store multiple values of either
same type or different types. These data types are defined by programmers by making use of
appropriate features of the language. Some user defined data types are classes and interfaces.

 Note
 You will learn about the arrays, strings, classes, and interfaces in the later chapters.

ESCAPE SEQUENCES
Escape sequence is a sequence of characters that are used to send a command to a device or a
program. These characters are preceded by a backslash (\), which is called an escape character.
These characters are not only used for text formatting but they also serve a special purpose.
Table 2-3 shows the list of escape sequences used in Java.

Escape Sequence Description

\t Insert a tab

\\ Insert a backslash

\’ Insert a single quote

\” Insert a double quote

\r Insert a carriage return

\n Insert a new line

\b Insert a backspace

\f Insert a form feed

Table 2-3 List of escape sequences

Example 1

The following program will display the use of escape sequence characters.

//Write a program to show the use of escape sequence characters
1 class Escape
2 {
3 public static void main(String[] args)
4 {
5 System.out.println(“Linefeed : \nLearning Java”);
6 System.out.println(“Single Quote : \‘Learning Java\’”);
7 System.out.println(“Double Quote : \“Learning Java\””);
8 System.out.println(“Backslash : \\Learning Java\\”);
9 System.out.println(“Horizontal Tab : Learning\tJava”);
10 System.out.println(“Backspace : Learning\bJava”);
11 System.out.println(“Carriage Return: Learning\rJava”);
12 }

13 }

2-8 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Explanation
Line 1
class Escape
In this line, the class keyword is used to define a new class and the identifier Escape is the
name of the class.

Line 3
public static void main(String arg[])
This line contains the main() method which is treated as the starting point of every Java program.
The execution of the program starts from this line.

Line 5
System.out.println(“Linefeed : \nLearning Java”);
This line will display the following on the screen:
Linefeed :
Learning Java

Line 6
System.out.println(“Single Quote : \‘Learning Java\’”);
This line will display the following on the screen:
Single Quote : ‘Learning Java’

Line 7
System.out.println(“Double Quote : \“Learning Java\””);
This line will display the following on the screen:
Double Quote : “Learning Java”

Line 8
System.out.println(“Backslash : \\Learning Java\\”);
This line will display the following on the screen:
Backslash : \Learning Java\

Line 9
System.out.println(“Horizontal Tab : Learning\tJava”);
This line will display the following on the screen:
Horizontal Tab : Learning Java

Line 10
System.out.println(“Backspace : Learning\bJava”);
This line will display the following on the screen:
Backspace : LearninJava

Line 11
System.out.println(“Carriage Return: Learning\rJava“);
This line will display the following on the screen:
Javaiage Return: Learning

The output of Example 1 is displayed in Figure 2-1.

Fundamental Elements of Java 2-9

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 2-1 The output of Example 1

VARIABLES
A variable is a named location where the data can be stored. It is a location in the computer’s
memory with a specific address, where a value can be stored and retrieved, when required. The
value of a variable can vary when the program is being executed.

Declaring a Variable
A variable must be declared before it is used in a program. The syntax for declaring a variable is
as follows:

data_type var_name;

In this syntax, the declaration has two parts. The first part data_type represents a data type,
which specifies the type of value to be stored in the variable and the amount of memory to be
allocated. The second part var_name represents the variable name. To name a variable, you need
to follow certain rules. As discussed earlier, identifier is the name used for variables, classes, and
so on. The rules to name a variable are same as discussed earlier with identifiers.

For example, you can declare an integer type variable age, as follows:

int age;

When this statement executes, the compiler allocates 4 bytes (size of int data type is 4 bytes)
of memory to the variable age. Now, the variable age is treated as a reference to the allocated
memory location.

You can also declare multiple variables of the same type in a single statement. These variables
are separated by commas. The syntax for declaring multiple variables is as follows:

data_type var1, var2, var3;

In this syntax, var1, var2, and var3 are declared as the variables of the particular data type,
which is represented by data_type. Here, all the three variables are of the same data type.

2-10 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

For example:

float	highest_temp,	lowest_temp;

In this example, the highest_temp and the lowest_temp are declared as the float type variables.

Initializing a Variable
Initialization means to assign an initial value to a variable. You can assign a value to a variable
by using the assignment operator (=). The assignment operator will be discussed later in this
chapter. The syntax for initializing a variable is as follows:

data_type var_name = value;

In this syntax, the data_type specifies the type of data, the var_name specifies the name of the
variable, and the value specifies the initial value, which is assigned to the variable var_name.

For example:

char ch = ‘y’;

In this example, the character value y is assigned to the character variable ch as an initial value.
Now, the character value y is stored at the memory location, which is referred by the variable ch.

Initializing a Variable Dynamically
In the previous section, you have learned that a variable is initialized at the time of its declaration.
In Java, you can also initialize a variable dynamically (at the time of program execution).

For example:

int sum=a+b;

When this statement is executed, first the values of variables a and b are added with the help
of the addition operator(+). Next, the resultant value is assigned to the integer variable sum.

 Note
 All the operators will be discussed later in this chapter.

Example 2
The following program illustrates the concept of dynamic initialization of a variable. The program
will calculate the average of three numbers, assign the resultant value to another variable, and
display it on the screen.

Fundamental Elements of Java 2-11

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

//Write a program to calculate the average of three numbers
1 class average
2 {
3 public static void main(String arg[])
4 {
5 int a=10, b=14, c=33;
6	 	 float	avg;	 	 	 	 	 	 	
7 avg= (a+b+c)/3; //Dynamic initialization of variable avg
8 System.out.println(“The average of three numbers is: ” +avg);
9 }
10 }

Explanation
Line 5
int a=10, b=14, c=33;
In this line, a, b, and c are declared as integer type variables and the initial values 10, 14, and
33 are assigned to them, respectively with the help of the assignment operator(=).

Line 6
float avg;
In this line, avg is declared as a float type variable.

Line 7
avg=(a+b+c)/3;
This line represents the dynamic initialization of the variable avg. In this line, first the values
10, 14, and 33 of the variables a, b, and c are added. After that, the resultant value 57 is divided
by 3. Next, the resultant value 19.0 is assigned to the variable avg at the execution time.

Line 8
System.out.println(“The average of three numbers is:” +avg);
This line will display the following on the screen:
The average of three numbers is: 19.0

 Note
 In line 8, the + sign is used to concatenate the value of the variable avg to the given string.

The output of Example 2 is displayed in Figure 2-2.

Figure 2-2 The output of Example 2

2-12 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Types of Variables
There are four types of variables in Java as given next:

a. Local variables
b. Instance variables
c. Class/Static variables
d. Method Parameter variables

Local Variables
The variables that are declared inside a block of code or within the body of a method
(or constructor) are known as local variables.

Constraints followed by local variables are:

•	 They have local scope; they cannot be accessed outside the block in which they are
defined. These variables are accessible only within that particular block.

•	 Access modifiers cannot be used for local variables.
•	 There is no default value for the local variables. These variables should be declared and

an initial value should be assigned to them before the first use.

For example:

int mul()
{
 int a=10, b=10, c;
 c=a*b;
}

In this example, mul() is a method and the variables a, b, and c are declared inside it. These
variables are local to this method and can be accessed or manipulated within this method only.
You will learn about the methods, constructor, or access modifiers in the later chapters.

Instance Variables
The variables that are declared inside a class but outside the method are known as instance
variables. It is related to a single instance of a class. These variables can be used by different
methods of the same class. They are also known as member variables and are not declared as static.

For example:

class Demo
{
 public static void main(String arg[])
 {
 int a, b;
 ----------;
 }
}

Fundamental Elements of Java 2-13

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

In this example, the variables a and b are declared inside the class definition but outside the
methods. Therefore, they are treated as instance variables and they can be used by different
methods of this class.

Class/Static Variables
Class variables are the same as the instance variables except that these variables are declared
with the static keyword. These variables cannot be local. Regardless of the number of times a
class has been instantiated, only one copy of static or class variable is created. You will learn
about the static data in later chapters.

For example:

class Demo
{
 public static void main(String arg[])
 {
 static int a, b;
 ----------;
 ----------;
 }
}

In this example, the variables a and b are declared with the static keyword and treated as the
class variables.

Method Parameter Variables
Method parameter variables are the variables that are declared in the method declaration
signature. Whenever a java method is invoked, a variable is created with the same name as it is
declared. Like local variables, it does not have any default value. So, an initial value should be
assigned for it, otherwise compiler will give an error.

For example:

void demo_method(int a, int b)
{
 -----------;
 -----------;
}

In this example, demo_method() is a method and variables a and b are parameters to this method.

As you know that public static void main(String[] arg) is the main method which is the entry
point of any program, the variable arg is the parameter to this method. The important thing
to remember is that parameters are always classified as “variables” not “fields”. This applies to
other parameters (such as constructors and exception handlers) that you’ll learn in later chapters.

2-14 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Scope and Lifetime of Variables
The scope of a variable refers to that part of the program within which it can be accessed and
manipulated. The scope also specifies when to allocate or deallocate memory to a variable. The
lifetime specifies the life-span of a variable in the computer’s memory. The four types of variables
discussed earlier have different scopes and lifetime. The scope of a local variable is only limited
to that block or method within which it is declared, and the lifetime of a local variable is only
till the time when that particular block or method is being executed. Once that particular block
or method is terminated, the variable gets deleted from the computer’s memory.

TYPE CONVERSION
Type conversion means converting one data type into another, also known as Type Casting. For
example, a data element of byte type can be converted into the int type with the help of type
conversion. Java supports two following types of conversion:

a. Implicit conversion (Widening conversion)
b. Explicit conversion (Narrowing conversion)

Implicit Conversion (Widening Conversion)
The implicit conversion takes place when the destination data type is larger than the source
data type and both the data types are compatible. It is also known as automatic conversion. For
example, a data element of short type is converted into the int type. In such cases, Java performs
implicit conversion because the int data type is larger than the short data type and both the
data types are compatible. In implicit conversion, no information is lost during the conversion.

Example 3

The following program will convert a data element of byte type into the int type by using the
concept of implicit type conversion and display the result on the screen.

//Write a program to convert a data element of byte type into the integer type

1 class Type_demo
2 {
3 public static void main(String arg[])
4 {
5 byte src=127;
6 int dest;
7 dest= src;
8 System.out.println(“dest = ” +dest);
9 }
10 }

Explanation
Line 5
byte src=127;
In this line, src is declared as a byte type variable and 127 is assigned as an initial value to it.

Fundamental Elements of Java 2-15

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 6
int dest;
In this line, dest is declared as an integer type variable.

Line 7
dest= src;
In this line, the implicit conversion takes place and the value 127 of the variable src is assigned
to the integer type variable dest.

Line 8
System.out.println(“dest = ” +dest);
This line will display the following on the screen:
dest = 127

The output of Example 3 is displayed in Figure 2-3.

Figure 2-3 The output of Example 3

Explicit Conversion (Narrowing Conversion)
In the previous section, you learned about the type conversion in which the destination type
was larger than the source type. But sometimes, you may need to convert a larger element type
into a smaller one. For example, you may need to convert an int type into byte type. In such
cases, explicit conversion is used. In explicit type of conversion, some information is always
lost. Therefore, this type of conversion is also known as narrowing conversion. The syntax for
explicit conversion is as follows:

(destination_data_type) value

In this syntax, the destination_data_type specifies the data type in which you want to convert
the value, which is specified by value.

Tip
The thumb rule for explicit conversion is that the same data type should exist on both sides.

For example, you can convert a value of int type into the byte type, as given next:

byte b;
int i =300;
b = (byte) i;

2-16 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

In this example, byte in the parentheses directs the compiler to convert the value of the integer
type i into the byte type. Now, the resultant value is assigned to the byte variable b.

Example 4
The following program will convert an int type into a byte type using the concept of explicit
type conversion and display the resultant value on the screen:

//Write a program to convert an int type into a byte type
1 class Explicit_demo
2 {
3 public static void main(String arg[])
4 {
5 byte b;
6 int val = 300;
7 b = (byte) val;
8 System.out.println(“After conversion, value of b is: ” +b);
9 }
10 }

Explanation
Line 5
byte b;
In this line, variable b is declared as a byte data type.

Line 6
int val = 300;
In this line, val is declared as an integer type variable and 300 is assigned as an initial value to it.

Line 7
b = (byte) val;
In this line, the value of variable val is converted into byte because byte is the destination type
and the resultant value will be assigned to the variable b.

Line 8
System.out.println(“After conversion, value of b is: ” +b);
This line will display the following on the screen:
After conversion, value of b is: 44

The output of Example 4 is displayed in Figure 2-4.

Figure 2-4 The output of Example 4

Fundamental Elements of Java 2-17

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

 Note
 A boolean value cannot be assigned to any other data type. Boolean is incompatible for conversion.
Boolean value can be assigned only to another boolean.

OPERATORS
Operators are defined as the symbols that are used when an operation is performed on the
variables or constants. Java provides with a rich variety of operators and these operators are
divided into different categories, which are as follows:

a. Unary operator
b. Arithmetic operators
c. Bitwise operators
d. Relational operators
e. Logical operators
f. Assignment operators
g. Miscellaneous operators

Unary Operators
Operators that require only one operand are known as unary operators. Table 2-4 lists all unary
operators that are used in Java.

Operator Description Syntax

+ Unary plus operator; indicates
positive value (numbers are positive
without this)

var1=+var2

- Unary minus operator; negates an
expression

var1=-var2

++ Increment operator; increments a
value by 1

var1=var2++, var1=++var2

-- Decrement operator; decrements a
value by 1

var1=var2--, var1=--var2

! Unary Compliment operator; inverts
the value of a boolean

!var1

Table 2-4 Unary operators with their syntax

Increment (++) and Decrement (--) Operators
The ++ operator is used to increase the value of its operand by one and the -- operator is used
to decrease the value of its operand by one; refer to syntax shown in Table 2-4.

You can use these operators in two notations, which are as follows:

a. Postfix notation
b. Prefix notation

2-18 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The Postfix notation
 In postfix notation, the increment or decrement operator is used after the operand. The

syntax for using the postfix operator is as follows:

 var1++; //increment
 var1--; //decrement

 In this syntax, the increment and decrement operators (++ and --) are used after the operand
var1. It will increase and decrease the value of the variable var1 by one.

 If the postfix notation is used in an expression, then first the value of an operand is assigned to

the variable at the left and then the value of the operand will be incremented or decremented
by one.

 For example:

 y = x--;

 In this example, first the value of the variable x is assigned to the variable y and then it is

decreased by one.

 The following two statements produce the same result as produced by the y = x-- statement
given in the previous example.

 y = x;
 x = x-1;

The Prefix notation
 In prefix notation, the increment or decrement operator is used before the operand. The

syntax for using the prefix operator is as follows:

 ++var1;
 --var1;

 In these syntaxes, the increment and decrement operator (++ and --) is used before the
operand var1. It will increase or decrease the value of the variable var1 by one.

 If the prefix notation is used in an expression, then first the value of an operand is
incremented or decremented by one and then it will assign to the variable at the left.

 For example:

 y = --x;

 In this example, first the value of the variable x is decreased by one and then it is assigned

to the variable y.

Fundamental Elements of Java 2-19

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

 The following two statements produce the same result as was produced by the y = --x
 statement given in the previous example.

 x = x-1;
 y = x;

Example 5
The following program will perform all the unary operations and display the resultant values
on the screen.

//Write a program to perform various unary operations
1 class UnaryOp_Demo
2 {
3 public static void main(String[] arg)
4 {
5 int result,res=+10;
6 System.out.println(“Unary plus Operator result is ” +res);
7 res = -res;
8 System.out.println(“Unary Minus Operator result is ” +res);
9 result=res++;
10 System.out.println(“Post-increment result is ” +result);
11 result=++res;
12 System.out.println(“Pre-increment result is ” +result);
13 result=res--;
14 System.out.println(“Post-decrement result is ” +result);
15 result=--res;
16 System.out.println(“Pre-decrement result is ” +result);
17 boolean success = false;
18 System.out.println(“Result without compliment operator is ”
 +success);
19 System.out.println(“Result with compliment operator is ”+!success);
20 }
21 }

Explanation
Line 5
int result,res=+10;
In this line, result and res are declared as an integer type variables and +10 is assigned as the
initial value to variable res. + is an unary operator which indicates positive value. If you do not
use unary plus operator, still it indicates the positive value.

Line 6
System.out.println(“Unary plus Operator result is ” +res);
This line will display the following on the screen:
Unary plus Operator result is 10

2-20 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 7
res = -res;
In this line, res is the variable and its value is updated to negative value by using unary minus
operator (-).

Line 8
System.out.println(“Unary Minus Operator result is ” +res);
This line will display the following on the screen:
Unary Minus Operator result is -10

Line 9
result=res++;
In this line, first the value (-10) of the variable res is assigned to the variable result. Next, the
value of the variable res is incremented by 1.

Line 10
System.out.println(“Post-increment result is ” +result);
This line will display the following on the screen:
Post-increment result is -10

Line 11
result=++res;
In this line, first the value (-9) of the variable res is incremented by 1. Next, it is assigned to
the variable result.

 Note
In Line 10, the output is -10. But in Line 11, the initial value of res variable is -9 because in
post increment, first the value is assigned to the variable then incremented by 1. So, Line 10 shows
the assigned value as output and incremented value (-9) is stored in the memory.

Line 12
System.out.println(“Pre-increment result is ” +result);
This line will display the following on the screen:
Pre-increment result is -8

Line 13
result=res--;
In this line, first the value (-8) of the variable res is assigned to the variable result. Next, it is
decremented by 1.

Line 14
System.out.println(“Post-decrement result is ” +result);
This line will display the following on the screen:
Post-decrement result is -8

Line 15
result=--res;
In this line, first the value (-9) of the variable res is decremented by 1. Next, it is assigned to
the variable result.

Fundamental Elements of Java 2-21

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 16
System.out.println(“Pre-decrement result is ” +result);
This line will display the following on the screen:
Pre-decrement result is -10

Line 17
boolean success = false;
In this line, success is declared as a boolean type variable and false is assigned as an initial
value to it.

Line 18
System.out.println(“Result without compliment operator is ” +success);
This line will display the following on the screen:
Result without compliment operator is false

Line 19
System.out.println(“Result with compliment operator is ” +!success);
This line will display the following on the screen:
Result with compliment operator is true

The output of Example 5 is displayed in Figure 2-5.

Figure 2-5 The output of Example 5

2-22 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Arithmetic Operators
Operators that are used in mathematical expressions are known as arithmetic operators. Table 2-5
lists all arithmetic operators that are used in Java.

Operator Description Syntax

+ Addition var1=var2 + var3

- Subtraction var1=var2 - var3

* Multiplication var1=var2 * var3

/ Division var1=var2 / var3

% Modulus Operator; gives
remainder

var1=var2 % var3

Table 2-5 Arithmetic Operators with their syntax

Example 6

The following program will perform addition, subtraction, multiplication, division and modulus
operations on two numbers using arithmetic operators and display the resultant values on the
screen.

/* Write a program to perform various arithmetic operations on two numbers using the arithmetic
operators: */

1 class Arith_operators
2 {
3 public static void main(String arg[])
4 {
5 int val1=30, val2=10;
6 int sum= val1+val2;
7 int sub= val1-val2;
8 int mul= val1*2;
9 int div= val1/val2;
10 int mod=mul%7;
11 System.out.println(“Value 1 = ” +val1);
12 System.out.println(“Value 2 = ” +val2);
13 System.out.println(“Addition = ” +sum);
14 System.out.println(“Subtraction = ” +sub);
15 System.out.println(“Multiplication = ” +mul);
16 System.out.println(“Division = ” +div);
17 System.out.println(“Modulus = ” +mod);
18 }
19 }

Explanation
Line 5
int val1=30, val2=10;
In this line, val1 and val2 are declared as integer type variables and their initial values are
assigned as 30 and 10, respectively.

Fundamental Elements of Java 2-23

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 6
int sum= val1+val2;
In this line, the value (30) of the variable val1 is added to the value (10) of the variable val2 and
the resultant value (40) is assigned to the integer variable sum.

Line 7
int sub= val1-val2;
In this line, the value (10) of the variable val2 is subtracted from the value (30) of the variable
val1 and the resultant value (20) is assigned to the integer variable sub.

Line 8
int mul= val1*2;
In this line, the value (30) of the variable val1 is multiplied by 2 and the resultant value (60) is
assigned to the integer variable mul.

Line 9
int div= val1/val2;
In this line, the value (30) of the variable val1 is divided by the value (10) of the variable val2
and the resultant value (3), which represents the quotient, is assigned to the integer variable div.

Line 10
int mod=mul%7;
In this line, the value (60) of the variable mul is divided by 7 and the resultant value (4), which
represents the remainder is assigned to the integer variable mod. Therefore, mul%7 returns
the remainder value 4.

Line 11
System.out.println(“Value 1 =” +val1);
This line will display the following on the screen:
Value 1=30

The working of lines 12 to 17 is similar to that of line 11.

The output of Example 6 is displayed in Figure 2-6.

Figure 2-6 The output of Example 6

2-24 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The Bitwise Operators
The data is stored in the computer’s memory in the form of 0’s and 1’s, and these are known as
bits. For example, a byte value 3 is stored in the computer’s memory as 00000011. To operate
or manipulate these bits individually, Java provides some operators that are known as bitwise
operators. The bitwise operators are used to operate on the single bits of an operand. These
operators are mostly applied on the integer types such as byte, short, int, and long. They can
also be applied on the char type. Table 2-6 shows a list of bitwise operators.

Operator Operation

~ Bitwise Compliment

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

>> Right Shift

<< Left Shift

>>> Zero Fill Right Shift

Table 2-6 Bitwise Operators

These operators are the least commonly used operators. Some of the bitwise operators are
categorized under bitwise logical operators and these are discussed next.

The Bitwise Compliment (~) Operator
The bitwise Compliment (~) operator comes under the category of bitwise logical operators.
The ~ operator inverts all bits of its operand; for example, 0 becomes 1 and 1 becomes 0. This
operator is also known as the bitwise unary NOT operator. The syntax for using the compliment
(~) operator is as follows:

~ value or expression;

For example:

int a = 3;
int b = ~a;

In this example, 3 is assigned to the integer variable a as an initial value, which is stored in the
computer’s memory as 00000011. In the next statement, ~ operator is used with the integer
variable a. This operator inverts all the bits 00000011 of the value 3 into 11111100. Then, the
resultant value is assigned to the integer variable b.

The Bitwise AND (&) Operator
The bitwise AND (&) operator also comes under the category of bitwise logical operators. If both
the operands consist of the value 1, then the & operator will produce bit 1 as the result. But, if
one or both the operands consist of the value 0, then the & operator will produce 0 as the result.

Fundamental Elements of Java 2-25

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The syntax for using the & operator is as follows:

operand1 & operand2;

For example, you can use the AND (&) operator with two operands: 23 and 15, as given next:

 00010111 //Bits representing the value 23
& 00001111 //Bits representing the value 15

 00000111 //Bits representing the value 7

The Bitwise OR (|) Operator
The bitwise OR (|) operator also comes under the category of bitwise logical operators. If one
or both the operands consist of the value 1, then the | operator will produce bit 1 as the result.
But, if both the operands contain 0, then the | operator will produce 0 as the result. The syntax
for using the | operator is as follows:

operand1 | operand2;

For example, you can use the OR (|) operator with two operands: 23 and 15, as follows:

 00010111 //Bits representing the value 23
00001111 //Bits representing the value 15
 00011111 //Bits representing the value 31

The Bitwise exclusive OR (^) Operator
The bitwise exclusive OR (^) or XOR operator also comes under the category of bitwise logical
operators. The ^ operator produces bit 1 as the result, if only one of the operands consists of
the value 1. Otherwise, it produces bit 0 as the result. The syntax for using the ^ operator is
as follows:

operand1 ^ operand2;

For example, you can use the XOR (^) operator with two operands: 23 and 15, as follows:

 00010111 //Bits representing the value 23
^ 00001111 //Bits representing the value 15

 00011000 //Bits representing the value 24

Table 2-7 represents all (~, &, |, and ^) bitwise logical operators.

2-26 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

X Y X&Y X|Y X^Y ~X

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

Table 2-7 Bitwise Logical Operators

Other than the bitwise logical operators, the following operators are also available:

The Right Shift (>>) Operator
The right shift (>>) operator is used to move all the bits of an operand to the right direction.
The >> operator operates on the bits for a specified number of times. The syntax for using
the right shift operator is as follows:

value or expression >> num

In this syntax, the num specifies the total number of times you want to perform the right shift
operation on all the bits of a value, which is specified by value or expression.

For example:

int a = 17;
int b = a>>2;

This example operates in the following way:

 00010001 //Bits representing the value 17

When the >> operator operates on the given bits for the first time, the right most bit, bit 1, is
lost and all other bits shifts to the right. The bit pattern, which is produced after the first step
is as follows:

 00001000 //Bits representing the value 8

In the second step, the same process is repeated as in the first step and the bit pattern, which
is produced after the second step is as follows:

 00000100 //Bits representing the value 4

The Left Shift (<<) Operator
The left shift (<<) operator is used to move all the bits of an operand to the left direction. The
<< operator operates on the bits for a specified number of times. The syntax for using the left
shift operator is as follows:

value or expression << num

Fundamental Elements of Java 2-27

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

In this syntax, the num specifies the total number of times you want to perform the left shift
operation on all bits of a value or expression.

For example:

int a = 17;
int b = a<<2;

This example operates in the following way:

 00010001 //Bits representing the value 17

When the << operator operates on the given bits for the first time, the leftmost bit, bit 0 is lost
and all other bits shifts to the left. The bit pattern that is produced after the first step is as follows:

 00100010 //Bits representing the value 34

In the second step, the same process is repeated as in the first step and the bit pattern, which
is produced after the second step is as follows:

 01000100 //Bits representing the value 68

The Zero Fill Right Shift (>>>) Operator
The zero fill right shift (>>>) operator is used to move all the bits of an operand to the right
direction and shifted values are filled up with zeros. It is also known as Unsigned right shift
operator. The >>> operator operates on the bits for a specified number of times. The syntax
for using the right shift operator is as follows:

value or expression >>> num

In this syntax, the num specifies the total number of times you want to perform the right shift
operation on all the bits of a value, which is specified by value or expression.

For example:

int a = 10;
int b = a>>>2;

This example operates in the following way:

 00001010 //Bits representing the value 10

When the >>> operator operates on the given bits for the first time, the rightmost bit (bit 1),
is lost and all other bits shift to the right by filling the left most bit with zero. The bit pattern
which is produced after the first step is as follows:

 00000101 //Bits representing the value 8

2-28 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

In the second step, the same process is repeated as in the first step and the bit pattern which is
produced after the second step is as follows:

 00000010 //Bits representing the value 4

 Note
Difference between the right shift (>>) and the zero fill right shift (>>>) operator is the sign
extension. The zero fill right shift operator “>>>” shifts a zero into the leftmost position, whereas
in right shift (>>), the leftmost position depends on sign extension.

Example 7

The following program will perform all the bitwise operations and display the resultant values
on the screen.

//Write a program to perform various bitwise operations
1 class BitwiseOp_demo
2 {
3 public static void main(String args[])
4 {
5 int a = 15, b = 10, c = 0;
6 c = a & b; /* 10 = 0000 1010 */
7 System.out.println(“a & b = ” + c);
8 c = a | b; /* 15 = 0000 1111 */
9 System.out.println(“a | b = ” + c);
10 c = a ^ b; /* 5 = 0000 0101 */
11 System.out.println(“a ^ b = ” + c);
12 c = ~a; /*-16 = 1111 0000 */
13 System.out.println(“~a = ” + c);
14 c = a << 2; /* 60 = 0011 1100 */
15 System.out.println(“a << 2 = ” + c);
16 c = a >> 2; /* 3 = 0000 0011 */
17 System.out.println(“a >> 2 = ” + c);
18 c = a >>> 2; /* 3 = 0000 1111 */
19 System.out.println(“a >>> 2 = ” + c);
20 }
21 }

Explanation
Line 5
int a = 15, b = 10, c = 0;
In this line, a, b and c are declared as integer type variables and 15, 10 and 0 are assigned as
initial value to them.

Line 6
c = a & b;
In this line, & is the bitwise AND operator between a and b variables which is performing the
bitwise AND operation and the resultant value is assigned to the variable c.

Fundamental Elements of Java 2-29

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 7
System.out.println(“a & b = ” + c);
This line will display the following on the screen:
a & b = 10

Line 8
c = a | b;
In this line, | is the bitwise OR operator between a and b variables which is performing the
bitwise OR operation and the resultant value is assigned to the variable c.

Line 9
System.out.println(“a | b = ” + c);
This line will display the following on the screen:
a | b = 15

Line 10
c = a ^ b;
In this line, ^ is the bitwise XOR operator between a and b variables which is performing the
bitwise XOR operation and the resultant value is assigned to the variable c.

Line 11
System.out.println(“a ^ b = ” + c);
This line will display the following on the screen:
a ^ b = 5

Line 12
c = ~a;
In this line, ~ is the bitwise compliment operator which is performing compliment of variable
a and the resultant value is assigned to the variable c.

Line 13
System.out.println(“~a = ” + c);
This line will display the following on the screen:
~a = -16

Line 14
c = a << 2;
In this line, << is the bitwise left shift operator which moves all the bits of variable a to the left
direction by 2 bits. In this process, the leftmost bits are lost and the resultant value is assigned
to the variable c.

Line 15
System.out.println(“a << 2 = ” + c);
This line will display the following on the screen:
a << 2 = 60

2-30 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 16
c = a >> 2;
In this line, >> is the bitwise right shift operator which moves all the bits of variable a to the
right direction by 2 bits. In this process, the right most bits are lost, and the resultant value is
assigned to the variable c.

Line 17
System.out.println(“a >> 2 = ” + c);
This line will display the following on the screen:
a >> 2 = 3

Line 18
c = a >>> 2;
In this line, >>> is the bitwise zero fill right shift operator which moves all the bits of variable
a to the right direction by 2 bits. The shifted values are filled by zero and the resultant value is
assigned to the variable c.

Line 19
System.out.println(“a >>> 2 = ” + c);
This line will display the following on the screen:
a >>> 2 = 3

The output of Example 7 is displayed in Figure 2-7.

Figure 2-7 The output of Example 7

The Relational Operators
The relational operators are used to determine the relationship between two expressions. These
operators are basically used to compare two values and the outcome of these operators is a boolean
value, either true or false. Table 2-8 shows the list of relational operators and their syntax.

Fundamental Elements of Java 2-31

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Operator Operation Syntax

== Equal to var1==var2

!= Not equal to var1!=var2

> Greater than var1>var2

< Less than var1<var2

>= Greater than equal to var1>=var2

<= Less than equal to var1<=var2

Table 2-8 Relational operators and their syntax

In the syntax shown in Table 2-8, the relational operators are used to check the relation between
the two variables, var1 and var2. If the values of variable var1 and var2 satisfy the condition
then the outcome of this operation is true. Otherwise, it is false.

You will learn more about the working of the relational operators in the next chapter as these
operators are mostly used in the control flow statements.

The Logical Operators
In the previous section, you learned about the relational operators, which are used to compare
two expressions or which operate on a single condition. But sometimes, you may need to
compare two or more conditions in a single statement. For this purpose, Java provides another
set of operators, known as the logical operators. The logical operators are used to compare two
or more relational expressions (statements that contain a relational operator) at a time and the
outcome of these operators is a boolean value, either true or false. Table 2-9 shows the list of
logical operators.

Operator Operation

&& Logical Short-circuiting AND Operator

|| Logical Short-circuiting OR Operator

! Logical NOT Operator

Table 2-9 The Logical Operators

Among these operators, the working of Logical NOT (!) operator is the same as the unary
Compliment Operator which is used for inverting a boolean value from false to true and vice-
versa.

For example:

!(x == y)

In this example, the == (equal to) operator is used to check the equality between the two
variables, x and y. If the outcome of the relational expression (x == y) is true then this outcome
is inverted by logical not operator. Therefore, the final outcome is false.

2-32 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Logical Short-Circuit AND (&&) and OR (||) Operators
The short-circuit && and || operators are mostly used in control flow statements, in which the
final outcome is based on the outcome of two or more than two conditions. The && operator
returns true, if the outcome of all operands is true. Otherwise, false. However, the || operator
returns true, if the outcome of any one of the operands is true. Otherwise, it is false. Table 2-10
shows the working of short-circuit && and || operators.

X Y X && Y X||Y

False False False False

False True False True

True False False True

True True True True

Table 2-10 Logical Operators

In Table 2-10, you can observe that the && operator returns true, only when both the operands
are true. Otherwise, it returns false. Whereas, the || operator returns true, even if any one
or both the operands are true. These operators are also known as the short-circuit operators
because when these operators are used, only the left-hand operand is evaluated. Based on the
result of that single operand, the final outcome will be produced. You will learn more about the
working of these operators in the next chapter.

The Assignment (=) Operators
Assignment operators are used to assign value to a variable. These operators can be categorized
as follows:

a. Simple assignment operator
b. Compound assignment operator

Simple Assignment Operator
Simple assignment operator is denoted by the single equal (=) symbol and is used to assign a
value to a variable. The = operator has already been discussed in the previous examples of this
chapter. The syntax for using the assignment operator is as follows:

variable_name = value;

In this syntax, the value on the right of the assignment operator (=) is assigned to the variable
variable_name on the left. You need to assign a variable on the left side and the value to be
assigned to this variable is always placed on the right side of the operator. The value assigned
on the right can be a variable, a constant, or the result of an operation.

You can also use the assignment operator (=) for multiple assignments. Its syntax is as follows:

var1 = var2 = var3 = value;

Fundamental Elements of Java 2-33

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

In this syntax, the same value represented by value is assigned to all the three variables var1,
var2, and var3. The assignment operator is evaluated from right to left; therefore var1 = var2
= var3 = 0; would assign 0 to var3, then var3 to var2, then var2 to var1.

Compound Assignment Operators
Compound assignment operators are a combination of two operators: first that specifies the
operation to be performed and the second is the assignment operator. Compound assignment
operators are also known as Short hand assignment operators. Table 2-11 shows the list of
compound assignment operators with their syntax.

Table 2-11 Compound assignment operators and their syntax

Operator Description Syntax Equivalent Expression

+= It adds right operand to the
left operand and assigns the
result to the left operand.

var1+=var2; var1=var1+var2;

-= It subtracts right operand
from the left operand and
assigns the result to the left
operand.

var1-=var2; var1=var1-var2;

*= It multiplies right operand to
the left operand and assigns
the result to the left operand.

var1*=var2; var1=var1*var2;

/= It divides left operand with
the right operand and assigns
the result to the left operand.

var1/=var2; var1=var1/var2;

%= It takes modulus using left
operand and right operand,
and assigns the result to the
left operand.

var1%=var2; var1=var1%var2;

&= Bitwise AND assignment
operator

var1&=var2; var1=var1&var2;

|= Bitwise OR ass ignment
operator

var1|=var2; var1=var1|var2;

^= Bitwise XOR assignment
operator

var1^=var2; var1=var1^var2;

<<= Bitwise left shift assignment
operator

var1<<=2; var1=var1<<2;

>>= Bitwise right shift assignment
operator

var1>>=2; var1=var1>>2;

>>>= Bitwise zero right shift
assignment operator

var1>>>=2; var1=var1>>>2;

2-34 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

In the syntax as shown in Table 2-11, first the given operation is performed on the variable var1
and var2. Next, the resultant value is assigned back to var1.

For example, to add the value 4 to the value of the variable a, and again assign the resultant
value to a, use the following statement:

a+=4;

You can also perform the same operation in the following way:

a = a + 4 ;

Example 8

The following program will apply the compound assignment operations on the given values
and also display the resultant values on the screen.

//Write a program to perform assignment operations
1 class Assign_demo
2 {
3 public static void main(String args[])
4 {
5 int var = 10, result = 0;
6 result += var ;//10
7 System.out.println(“result += var : ” + result);
8 result *= var ;//100
9 System.out.println(“result *= var : ” + result);
10 result -= var ;//90
11 System.out.println(“result -= var : ” + result);
12 result /= var ;//9
13 System.out.println(“result /= var : ” + result);
14 result %= var ;//9
15 System.out.println(“result %= var : ” + result);
16 result ^= var ;//3
17 System.out.println(“result ^= var = ” + result);
18 result |= var ;//11
19 System.out.println(“result |= var = ” + result);
20 result &= var;//10
21 System.out.println(“result &= var = “ + result);
22 result <<= 2 ;//40
23 System.out.println(“result <<= 2 = ” + result);
24 result >>= 2 ;//10
25 System.out.println(“result >>= 2 = ” + result);
26 result >>>= 3 ;//1
27 System.out.println(“result >>>= 3 = ” + result);
28 }
29 }

Fundamental Elements of Java 2-35

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Explanation
Line 5
int var = 10, result = 0;
In this line, var and result are declared as integer type variables and 10 and 0 are assigned as
initial value to them.

Line 6
result += var ;
In this line, first the value (0) of the variable result is added to the value (10) of the variable var.
Next, the resultant value is assigned back to the variable result.

Line 7
System.out.println(“result += var : ” + result);
This line will display the following on the screen:
result += var : 10

Line 8
result *= var ;
In this line, first the value (10) of the variable result is multiplied to the value (10) of the variable
var. Next, the resultant value is assigned back to the variable result.

Line 9
System.out.println(“result *= var : ” + result);
This line will display the following on the screen:
result *= var : 100

Line 10
result -= var ;
In this line, first the value (10) of the variable var is subtracted from the value (100) of the
variable result. Next, the resultant value is assigned back to the variable result.

Line 11
System.out.println(“result -= var : ” + result);
This line will display the following on the screen:
result -= var : 90

Line 12
result /= var ;
In this line, first the value (90) of the variable result is divided by the value (10) of the variable
var. Next, the resultant (quotient) value is assigned back to the variable result.

Line 13
System.out.println(“result /= var : ” + result);
This line will display the following on the screen:
result /= var : 9

2-36 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 14
result %= var ;
In this line, first the value (9) of the variable result is divided by the value (10) of the variable
var. Next, the remainder value is assigned back to the variable result.

Line 15
System.out.println(“result %= var : ” + result);
This line will display the following on the screen:
result %= var : 9

Line 16
result ^= var ;
In this line, first the bitwise XOR operation is performed between the variables result and var
whose values are 9 and 10, respectively. Next, the resultant value is assigned back to the variable
result.

Line 17
System.out.println(“result ^= var : ” + result);
This line will display the following on the screen:
result ^= var : 3

Line 18
result |= var ;
In this line, first the bitwise OR operation is done between the variables result and var whose
values are 3 and 10, respectively. Next, the resultant value is assigned back to the variable result.

Line 19
System.out.println(“result |= var : ” + result);
This line will display the following on the screen:
result |= var : 11

Line 20
result &= var ;
In this line, first the bitwise AND operation is done between the variables result and var whose
values are 3 and 10, respectively. Next, the resultant value is assigned back to the variable result.

Line 21
System.out.println(“result &= var : ” + result);
This line will display the following on the screen:
result &= var : 10

Line 22
result <<= 2 ;
In this line, first the bitwise left shift operation is performed on the variable result whose value
is 10. It moves all the bits of variable result to the left direction by 2 bits and the left most bits
are lost. Next, the resultant value is assigned back to the variable result.

Fundamental Elements of Java 2-37

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 23
System.out.println(“result <<= 2 : ” + result);
This line will display the following on the screen:
result <<= 2 : 40

Line 24
result >>= 2 ;
In this line, first the bitwise right shift operation is performed on the variable result whose value
is 40. It moves all the bits of variable result to the right direction by 2 bits and the right most
bits are lost. Next, the resultant value is assigned back to the variable result.

Line 25
System.out.println(“result >>= 2 : ” + result);
This line will display the following on the screen:
result >>= 2 : 10

Line 26
result >>>= 2 ;
In this line, first the bitwise zero fill right shift operation is performed on the variable result
whose value is 10. It moves all the bits of variable result to the right direction by 2 bits and the
shifted values are filled by zero. Next, the resultant value is assigned back to the variable result.

Line 27
System.out.println(“result >>>= 2 : ” + result);
This line will display the following on the screen:
result >>>= 2 : 1

The output of Example 8 is displayed in Figure 2-8.

Figure 2-8 The output of Example 8

2-38 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

The ? : Operator
The ? : operator is also known as the ternary operator because it works on three operands. The
first operand is a boolean expression. If the expression is true then it returns second operand, else
it returns third operand. It is a conditional operator that provides a shorter syntax for the if-else
statement (discussed in the later chapters). The syntax for using the ? : operator is as follows:

conditional_expression ? statement 1 : statement 2

In this syntax, if the condition specified by conditional_expression results in true, the statement
1 is executed. Otherwise, the statement 2 is executed.

For example:

int c = a!=0 ? a : b;

In this example, first the conditional expression a!=0 (value of the variable a is not equal to 0) is
evaluated. If it results in true, the value of the variable a will be assigned to the integer variable
c. Otherwise, the value of the variable b will be assigned to the integer variable c.

Example 9

The following program will find the greater of the two given numbers using ternary operator,
assign the resultant value to another variable, and also display the resultant value on the screen.

//Write a program to find the greater number
1 class Ternary_demo
2 {
3 public static void main(String arg[])
4 {
5 int a=20, b=11, c;
6 c= a>b ? a : b;
7 System.out.println(“The greater value is: ” +c);
8 }
9 }

Explanation
Line 6
c= a>b ? a : b;
In this line, the ? : operator is used. First, the conditional expression a>b is evaluated. The
expression results in true because the value 20 of the variable a is greater than the value 11 of
the variable b. Now, the resultant value 20 of the variable a is assigned to the integer variable c.

Line 7
System.out.println(“The greater value is: ” +c);
This line will display the following on the screen:
The greater value is: 20

The output of Example 9 is displayed in Figure 2-9.

Fundamental Elements of Java 2-39

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Figure 2-9 The output of Example 9

The instanceof Operator
The instanceof operator is used to check whether the object is an instance of the specified type
(class or subclass or interface) at runtime. It is also known as type comparison operator because
it compares the instance with type. If object is of the specified type, then the instanceof operator
evaluates to true. Otherwise, the result is false. If you apply the instanceof operator with any
variable that has a null value, it returns false.
The syntax for the instanceof operator is as follows:

object_name instanceof class_name

Example 10
The following program will check whether the object is an instance of the class by using
the instanceof operator and display the resultant value on the screen.

//Write a program to check whether the object is an instance of the class
1 class Instanceof_demo
2 {
3 public static void main(String args[])
4 {
5 Instanceof_demo id=new Instanceof_demo();
6 boolean i=id instanceof Instanceof_demo;
7 System.out.println(“value:” +i);
8 }
9 }

Explanation
Line 5
Instanceof_demo id=new Instanceof_demo();
In this line, an id object of instanceof_demo class is created.

Line 6
boolean i=id instanceof Instanceof_demo;
In this line, instanceof operator is used to check whether the id object is instance of
Instanceof_demo class.

2-40 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Line 7
System.out.println(“value:” +i);
This line will display the following on the screen:
value: true

The output of Example 10 is displayed in Figure 2-10.

Figure 2-10 The output of Example 10

Operator Precedence
The operator precedence determines the order of execution of operators by the compiler. An
operator with a high precedence is executed before an operator with a low precedence.
All binary operators except the assignment operators are evaluated from left to right. When
operators of equal precedence appear in the same expression then they are evaluated from left
to right whereas assignment operators are evaluated from right to left.

A list of Java operators arranged from the highest to the lowest precedence is given in the
Table 2-12.

 Note
In the operator precedence table, the highest precedence is represented by 1 and the lowest precedence
is represented by 14. And, the operators given in the same line have the same precedence.

For example:

x=a+b*c

The multiplication operator (*) has a higher precedence than the addition (+) and the
assignment operators (=). Therefore, in the given example, first the value of the variable b is
multiplied by the value of the variable c, and then the resultant value is added to the variable a
(because the addition operator has a higher precedence than the assignment operator). Next,
the resultant value of the expression a+b*c is assigned to the variable x.

Fundamental Elements of Java 2-41

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Precedence Operators

1 () [] .

2 ++var --var +var -var ~var !var

3 * / %

4 + -

5 << >> >>>

6 > < <= >= instanceof

7 == !=

8 &

9 ^

10 |

11 &&

12 ||

13 ?:

14 = += -= *= /= %= &= ^= |= <<= >>= >>>=

Table 2-12 Operator Precedence

COMMAND-LINE ARGUMENTS
You must have noted that in all examples explained in this book, no information was passed to
the program during the time of its execution. But sometimes, you need to pass some information
to a program during the time of its execution. This can be done by using the command-line
arguments. You can simply pass these arguments by appending them after the name of the
program during the time of its execution. The command-line arguments that are passed during
the execution time are stored in the String type array arg[] of the main() method.

For example:

 D:\Java Projects\Ch02>java demo How are you

In this example, demo is the program name and How are you are the command-line arguments.
Here, the first argument How is stored at arg[0], are is stored at arg[1], and so on.

Example 11

The following program illustrates the use of the command-line arguments. The program will
display all the command-line arguments entered by a user.

2-42 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

//Write a program to display the command-line arguments
1 class Commandline_demo
2 {
3 public static void main(String arg[])
4 {
5 System.out.println(“First argument is: ” +arg[0]);
6 System.out.println(“Second argument is: ” +arg[1]);
7 }
8 }

Explanation
In this example, the arguments are passed by the user during the time of program’s execution
at 0th and 1st position of array arg[].

Now, execute the program using the following statement:

 java Commandline_demo Hello User

The output of Example 11 is displayed in Figure 2-11.

Figure 2-11 The output of Example 11

As you know, you can pass only string type array through command line arguments because array
arg[] is of string type. If you want to pass values other than string then you will have to convert
it into other types. You can use different ways for these conversions which are discussed next.

String to int
We can convert String to int in Java by using Integer.parseInt() method. Whenever users want
to do any mathematical operation, they need numbers. But when they pass numbers, JVM treats
them as String type. In such cases, users have to convert these values from String to int. To do
so, they will use Integer.parseInt() method.

For example:

int x=Integer.parseInt(arg[0]);

In this example, parseInt is the method of the Integer class and is used to read numeric values
from the command-line arguments. Next, the resultant value will be assigned to the integer
type variable x.

Fundamental Elements of Java 2-43

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

String to long
We can convert String to long in Java by using the Long.parseLong() method. Whenever users
want to do any mathematical operations on long numbers, they need to convert String to long
by using Long.parseLong() method.

For example:

long y=Long.parseLong(arg[0]);

In this example, parseLong is the method of the Long class and is used to read long numeric
values from the command-line arguments. Next, the resultant value will be assigned to the long
type variable y.

String to float
We can convert String to float in Java by using Float.parseFloat() method. Whenever users want
to do any mathematical operations on float numbers, they need to convert String to float by
using the Float.parseFloat() method.

For example:

float	z=Float.parseFloat(arg[0]);	

In this example, parseFloat is the method of the Float class and is used to read float numeric
values from the command-line arguments. Next, the resultant value will be assigned to the float
type variable z.

Example 12

The following program illustrates the use of String to int conversion through command-line
arguments. The program will calculate the sum of two integer values entered by the user and
display the resultant value on the screen.

//Write a program to calculate the sum of two integer numbers entered by user.
1 class Command_demo
2 {
3 public static void main(String arg[])
4 {
5 int a,b,c;
6 a= Integer.parseInt(arg[0]);
7 b= Integer.parseInt(arg[1]);
8 c=a+b;
9 System.out.println(“Addition = ” +c);
10 }
11 }

2-44 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

Explanation
Lines 6 and 7
int a = Integer.parseInt(arg[0]);
int b = Integer.parseInt(arg[1]);

In these lines, parseInt is the method of the Integer class and is used to read numeric values
from the command-line arguments. Next, the resultant values will be assigned to the integer
type variables a and b, respectively.

The output of Example 12 is displayed in Figure 2-12.

Figure 2-12 The output of Example 12

 Self-Evaluation Test
Answer the following questions and then compare them to those given at the end of this
chapter:

1. A __________ is a named storage location, where the data can be stored.

2. Variables declared inside a class but outside the method are known as the __________
variables.

3. The __________ conversion is used to convert a larger data type into a smaller one.

4. A __________ operator returns the remainder after the division of two numbers.

5. The __________ operator is used to increase the value of its operand by one.

6. In Java, the size of all primitive data types is clearly defined. (T/F)

7. A variable can start with a digit. (T/F)

8. In Java, the + sign is used for concatenation. (T/F)

9. In Java, a class variable is declared with static keyword. (T/F)

10. The % operator returns the quotient after the division of two numbers. (T/F)

Fundamental Elements of Java 2-45

E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

 Review Questions
Answer the following questions:

1. Differentiate between the local and instance variables.

2. Explain explicit type conversion with the help of a suitable example.

3. Explain the working of the % operator with the help of a suitable example.

4. Explain the working of the prefix increment operator with the help of a suitable example.

5. Explain ? : operator with a suitable example.

6. Explain instanceof operator.

7. Differentiate between primitive and user defined data types.

8. Find errors in the following program statements:

(a) class Demo
 {
 public static main void(String args[])
 {
 System.out.println(“Hello Java”);
 }
 }

(b) class Variable_demo
 {
 public static void main(String args[])
 {
 int a =10, b=19;
 c=a+b;
 System.out.println(c);
 }
 }

(c) class Type_convert
 {
 public static void main(String args[])
 {
 byte a;
 int b = 200;
 a = b;
 ----------;
 ----------;
 }
 }

2-46 Introduction to Java Programming
E
va

lu
a

ti
on

 C
op

y.
 D

o
no

t
re

pr
od

uc
e.

 F
or

 i
nf

or
m

a
ti

on
 v

is
it

 w
w

w
.c

a
dc

im
.c

om

(d) Class Syntax
 {
 public static void main(String args[])
 {
 System.out.println(“Error”);
 }
 }

(e) class Ternary
 {
 public static void main(String args[])
 {
 int x= 10, y=10, c;
 c= x==y ? x : y;
 ----------;
 ----------;
 }
 }

EXERCISES

Exercise 1

Write a program to shift the value 200 to the right by two positions using the (shift right) >>
operator.

Exercise 2
Write a program to calculate the area of a circle whose radius is entered by the user.

Answers to Self-Evaluation Test
1. variable, 2. instance, 3. explicit, 4. %, 5. ++, 6. T, 7. F, 8. T, 9. T, 10. F

